The role of aluminium as an additive element in the synthesis of porous 4H-silicon carbide

被引:6
|
作者
Hvam, Jeanette [1 ]
Morgen, Per [2 ]
Skou, Eivind M. [1 ]
Nielsen, Ulla Gro [2 ]
Wolff, Thomas [3 ]
Warner, Terence E. [1 ]
机构
[1] Univ Southern Denmark, Dept Chem Engn Biotechnol & Environm Technol, Campusvej 55, DK-5230 Odense M, Denmark
[2] Univ Southern Denmark, Dept Phys Chem & Pharm, Odense, Denmark
[3] Dinex DET Germany, Dinex AS, Bindlach, Germany
关键词
silicon carbide; porosity; recrystallization; diesel particulate filter; catalyst support; SINTERED SILICON-CARBIDE; SI-C SYSTEM; CARBOTHERMAL REDUCTION; PHASE-FORMATION; SOLID-SOLUTION; ALN; COMPOSITES; TEMPERATURE; CERAMICS; IMPLANTATION;
D O I
10.1016/j.jeurceramsoc.2016.05.037
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Addition of 5 at.% aluminium to silicon and carbon in the process of forming SiC monoliths for use as diesel particle filters and catalyst supports, creates mechanically stable, well connected, and highly porous 4H-SiC structures. These monoliths have 65 % accessible porosity with pore diameters of 17 - 20 mu m. Mixtures of silicon, graphite, aluminium and water, are extruded into honeycomb structures and heated under nitrogen and argon. The 2H-AlN crystalline assembly formed during initial heating under nitrogen at 850 degrees C acts as a template for the subsequent reaction between silicon and graphite under argon to yield 3C-SiC. During a final high temperature step under argon at 1950 degrees C, Al-vapour/liquid is crucial for the transformation of 3C-SiC to 4H-SiC. This final step also alters the SiC crystal morphology significantly and produces large by-product crystals of Al4C3 center dot mSiC center dot nAlN. The polytypic conversion and recrystallization mechanism were found, in this case, to be independent phenomena. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3267 / 3278
页数:12
相关论文
共 50 条
  • [2] Phosphorus implantation into 4H-silicon carbide
    M. A. Capano
    R. Santhakumar
    R. Venugopal
    M. R. Melloch
    J. A. Cooper
    Journal of Electronic Materials, 2000, 29 : 210 - 214
  • [3] Phosphorus implantation into 4H-silicon carbide
    Capano, MA
    Santhakumar, R
    Venugopal, R
    Melloch, MR
    Cooper, JA
    JOURNAL OF ELECTRONIC MATERIALS, 2000, 29 (02) : 210 - 214
  • [4] NITROGEN DONORS IN 4H-SILICON CARBIDE
    GOTZ, W
    SCHONER, A
    PENSL, G
    SUTTROP, W
    CHOYKE, WJ
    STEIN, R
    LEIBENZEDER, S
    JOURNAL OF APPLIED PHYSICS, 1993, 73 (07) : 3332 - 3338
  • [5] 4H-silicon carbide power switching devices
    Palmour, JW
    Allen, ST
    Singh, R
    Lipkin, LA
    Waltz, DG
    SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 : 813 - 816
  • [6] 4H-Silicon Carbide as an Acoustic Material for MEMS
    Long, Yaoyao
    Liu, Zhenming
    Ayazi, Farrokh
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2023, 70 (10) : 1189 - 1200
  • [7] Material defects in 4H-silicon carbide diodes
    Zimmermann, U
    Österman, J
    Kuylenstierna, D
    Hallén, A
    Konstantinov, AO
    Vetter, WM
    Dudley, M
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (01) : 611 - 618
  • [8] 6H- and 4H-silicon carbide for device applications
    Bakin, AS
    Dorozhkin, SI
    Zubrilov, AS
    1998 FOURTH INTERNATIONAL HIGH TEMPERATURE ELECTRONICS CONFERENCE, 1998, : 253 - 256
  • [9] Dopant ion implantation simulations in 4H-silicon carbide
    Phelps, GJ
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2004, 12 (06) : 1139 - 1146
  • [10] Charge Sheet Super Junction in 4H-Silicon Carbide
    Akshay, K.
    Jaikumar, M. G.
    Karmalkar, Shreepad
    2020 IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2020), 2020,