Solving a fuzzy set-covering problem

被引:17
|
作者
Hwang, MJ [1 ]
Chiang, CI
Liu, YH
机构
[1] Univ Hsuan Chuang, Dept Lib & Informat Sci, Hsinchu, Taiwan
[2] Univ Hsuan Chuang, Dept Mkt & Distribut Management, Hsinchu, Taiwan
[3] Univ Nebraska, Dept Math, Omaha, NE 68182 USA
关键词
set-covering problems; fuzzy sets; fuzzy set-covering problem; algebraic sum operator;
D O I
10.1016/j.mcm.2004.10.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work proposed a set-covering model using the concept of fuzzy set theory to define "fuzzy covers." The proposed fuzzy set-covering model can be reduced to a nonlinear integer programming problem which is easily solvable with modern software. This model is a nature extension of the classical set-covering model, and is able to handle uncertainty. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:861 / 865
页数:5
相关论文
共 50 条
  • [1] SET-COVERING PROBLEM
    BALAS, E
    PADBERG, MW
    [J]. OPERATIONS RESEARCH, 1972, 20 (06) : 1152 - 1161
  • [2] Harmony Search Algorithm for Solving Set-Covering Problem
    Salas, Juan
    Crawford, Broderick
    Soto, Ricardo
    Gomez Rubio, Alvaro
    Jaramillo, Adrian
    Mansilla Villablanca, Sebastian
    Olguin, Eduardo
    [J]. TRENDS IN APPLIED KNOWLEDGE-BASED SYSTEMS AND DATA SCIENCE, 2016, 9799 : 917 - 930
  • [3] The probabilistic set-covering problem
    Beraldi, P
    Ruszczynski, A
    [J]. OPERATIONS RESEARCH, 2002, 50 (06) : 956 - 967
  • [4] APPLICATIONS OF LOCATION SET-COVERING PROBLEM
    REVELLE, C
    TOREGAS, C
    FALKSON, L
    [J]. GEOGRAPHICAL ANALYSIS, 1976, 8 (01) : 67 - 76
  • [5] AN APPROACH TO THE SOLUTION OF THE SET-COVERING PROBLEM
    ROSHCHIN, VA
    SERGIENKO, IV
    [J]. CYBERNETICS, 1984, 20 (06): : 849 - 855
  • [6] FRACTIONS IN THE LOCATION SET-COVERING PROBLEM
    ROSING, KE
    REVELLE, CS
    ROSINGVOGELAAR, H
    [J]. ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 1992, 19 (02): : 125 - 130
  • [7] SET-COVERING PROBLEM WITH EQUALITY CONSTRAINTS
    GUHA, DK
    [J]. OPERATIONS RESEARCH, 1973, 21 (01) : 348 - 351
  • [8] INTEGERS IN THE LOCATION SET-COVERING PROBLEM
    ROSING, KE
    REVELLE, CS
    [J]. ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 1993, 20 (04): : 481 - 482
  • [9] On the minimum-cost set-covering problem
    Chiang, CC
    Dai, HK
    [J]. PDPTA '05: Proceedings of the 2005 International Conference on Parallel and Distributed Processing Techniques and Applications, Vols 1-3, 2005, : 1199 - 1205
  • [10] An ant colony algorithm for solving set-covering problems
    Gao, Yang
    Ge, Hongwei
    [J]. DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 467 - 469