Genetic influences on functional connectivity associated with feedback processing and prediction error: Phase coupling of theta-band oscillations in twins

被引:5
|
作者
Demiral, Sukru Baris [1 ,2 ]
Golosheykin, Simon [1 ]
Anokhin, Andrey P. [1 ]
机构
[1] Washington Univ, Sch Med, St Louis, MO USA
[2] NIH, Bldg 10, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Feedback; EEG; Prediction error; Genetics; Brain oscillations; Neural synchrony; Connectivity; Phase coherence; TIME-FREQUENCY ANALYSIS; ANTERIOR CINGULATE; NEUROPSYCHIATRIC DISORDERS; ENVIRONMENTAL-INFLUENCES; NEURONAL OSCILLATIONS; FRONTAL THETA; EEG COHERENCE; DYNAMICS; BRAIN; NEGATIVITY;
D O I
10.1016/j.ijpsycho.2016.12.013
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Detection and evaluation of the mismatch between the intended and actually obtained result of an action (reward prediction error) is an integral component of adaptive self-regulation of behavior. Extensive human and animal research has shown that evaluation of action outcome is supported by a distributed network of brain regions in which the anterior cingulate cortex (ACC) plays a central role, and the integration of distant brain regions into a unified feedback-processing network is enabled by long-range phase synchronization of cortical oscillations in the theta band. Neural correlates of feedback processing are associated with individual differences in normal and abnormal behavior, however, little is known about the role of genetic factors in the cerebral mechanisms of feedback processing. Here we examined genetic influences on functional cortical connectivity related to prediction error in young adult twins (age 18, n = 399) using event-related EEG phase coherence analysis in a monetary gambling task. To identify prediction error-specific connectivity pattern, we compared responses to loss and gain feedback. Monetary loss produced a significant increase of theta-band synchronization between the frontal midline region and widespread areas of the scalp, particularly parietal areas, whereas gain resulted in increased synchrony primarily within the posterior regions. Genetic analyses showed significant heritability of frontoparietal theta phase synchronization (24 to 46%), suggesting that individual differences in large-scale network dynamics are under substantial genetic control. We conclude that theta-band synchronization of brain oscillations related to negative feedback reflects genetically transmitted differences in the neural mechanisms of feedback processing. To our knowledge, this is the first evidence for genetic influences on task-related functional brain connectivity assessed using direct real-time measures of neuronal synchronization. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 2 条
  • [1] Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control
    Behroozmand, Roozbeh
    Ibrahim, Nadine
    Korzyukov, Oleg
    Robin, Donald A.
    Larson, Charles R.
    FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [2] Online Left-Hemispheric In-Phase Frontoparietal Theta tACS Modulates Theta-Band EEG Source-Based Large-Scale Functional Network Connectivity in Patients with Schizophrenia: A Randomized, Double-Blind, Sham-Controlled Clinical Trial
    Yeh, Ta-Chuan
    Huang, Cathy Chia-Yu
    Chung, Yong-An
    Park, Sonya Youngju
    Im, Jooyeon Jamie
    Lin, Yen-Yue
    Ma, Chin-Chao
    Tzeng, Nian-Sheng
    Chang, Hsin-An
    BIOMEDICINES, 2023, 11 (02)