Darboux transformations for a Bogoyavlenskii equation in 2+1 dimensions

被引:0
|
作者
Estévez, PG [1 ]
Hernáez, GA [1 ]
机构
[1] Univ Salamanca, Fac Ciencias, Area Fis Teor, E-37008 Salamanca, Spain
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the singular manifold method to obtain the Lax pair, Darboux transformations and soliton solutions for a (2+1) dimensional integrable equation.
引用
收藏
页码:117 / 123
页数:7
相关论文
共 50 条
  • [1] The Calogero–Bogoyavlenskii–Schiff Equation in 2+1 Dimensions
    M. S. Bruzón
    M. L. Gandarias
    C. Muriel
    J. Ramírez
    S. Saez
    F. R. Romero
    [J]. Theoretical and Mathematical Physics, 2003, 137 : 1367 - 1377
  • [2] The Calogero-Bogoyavlenskii-Schiff equation in 2+1 dimensions
    Bruzón, MS
    Gandarias, ML
    Muriel, C
    Ramírez, J
    Saez, S
    Romero, FR
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) : 1367 - 1377
  • [3] Darboux transformation and solutions for an equation in 2+1 dimensions
    Estévez, PG
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1406 - 1419
  • [4] NEW FEATURES OF BACKLUND AND DARBOUX TRANSFORMATIONS IN 2+1 DIMENSIONS
    BOITI, M
    PEMPINELLI, F
    POGREBKOV, AK
    POLIVANOV, MC
    [J]. INVERSE PROBLEMS, 1991, 7 (01) : 43 - 56
  • [5] Darboux transformations and symmetries of a (2+1)-extension of burgers equation
    Zhou, KH
    Tian, C
    Tian, YB
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (04) : 409 - 411
  • [6] New Backlund transformations of the (2+1)-dimensional Bogoyavlenskii equation via localization of residual symmetries
    Liu, Xi-zhong
    Yu, Jun
    Lou, Zhi-mei
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) : 1669 - 1679
  • [7] Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii's breaking soliton equation in (2+1) dimensions
    Fan, Engui
    Hon, Y. C.
    [J]. PHYSICAL REVIEW E, 2008, 78 (03):
  • [8] Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation
    Lou, S. Y.
    Jia, M.
    Tang, X. Y.
    Huang, F.
    [J]. PHYSICAL REVIEW E, 2007, 75 (05):
  • [9] Darboux transformations to (2+1)-dimensional lattice systems
    Chen, JB
    Zhu, JY
    Geng, XG
    [J]. CHINESE PHYSICS LETTERS, 2005, 22 (08) : 1825 - 1828
  • [10] RECIPROCAL TRANSFORMATIONS IN (2+1) DIMENSIONS
    ROGERS, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09): : L491 - L496