A geometric splitting theorem for actions of semisimple Lie groups

被引:0
|
作者
Rosales-Ortega, Jose [1 ]
机构
[1] UCR ITCR, Sch Math, San Jose, Costa Rica
关键词
Bi-invariant metric; Pseudo-Riemannian; Semisimple Lie group; Topologically transitive action; ISOMETRIC ACTIONS;
D O I
10.1007/s12188-021-00242-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact connected smooth pseudo-Riemannian manifold that admits a topologically transitive G-action by isometrics, where G = G(1) ... G(l) is a connected semisimple Lie group without compact factors whose Lie algebra is g = g(1) circle plus g(2) circle plus ... circle plus g(l). If m(0), n(0), n(0)(i) are the dimensions of the maximal lightlike subspaces tangent to M, G, G(i), respectively, then we study G-actions that satisfy the condition m(0) = n(0)(1) + ... + n(0)(l). This condition implies that the orbits are non-degenerate for the pseudo Riemannian metric on M and this allows us to consider the normal bundle to the orbits. Using the properties of the normal bundle to the G-orbits we obtain an isometric splitting of M by considering natural metrics on each G(i).
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条