Detecting leaks through AMR data analysis

被引:3
|
作者
Claudio, K. [1 ]
Couallier, V. [2 ]
Leclerc, C. [1 ]
Le Gat, Y. [3 ]
Litrico, X. [1 ]
Saracco, J. [4 ]
机构
[1] LyRE Lyonnaise Eaux, 91 Rue Paulin, F-33000 Bordeaux, France
[2] Inst Math Bordeaux, F-33405 Talence, France
[3] IRSTEA Bordeaux, Team REBX, F-33612 Cestas, France
[4] INRIA Bordeaux Sud Ouest, Team CQFD, F-33405 Talence, France
来源
关键词
automatic meter reading; leakage detection; statistical process control;
D O I
10.2166/ws.2015.071
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Automatic meter reading (AMR) provides real-time consumption data, enabling to collect a huge amount of information about daily, even hourly, consumptions. It is then easy to assess lost volumes on the network, using supplied volumes information. However, because of the multiple components of water losses, the metering and calculation inaccuracies, the occurrence of new (detectable) leaks is hard to detect. Therefore this paper aims at proposing a user-friendly statistical tool that helps to quickly and reliably detect new leakage occurrence. The use of process control chart (like exponential weighted moving average) enables us to detect changes in the water loss time series, in particular, a new leak occurrence.
引用
收藏
页码:1368 / 1372
页数:5
相关论文
共 50 条
  • [1] Acoustical analysis for detecting the leaks of pipeline
    Kuo, HC
    Su, YC
    Kuo, YS
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, 1999, : 220 - 227
  • [2] Detecting leaks of sensitive data due to stale reads
    Snavely, Will
    Klieber, William
    Steele, Ryan
    Svoboda, David
    Kotov, Andrew
    [J]. 2018 IEEE CYBERSECURITY DEVELOPMENT CONFERENCE (SECDEV 2018), 2018, : 37 - 44
  • [3] Symbolic pointer analysis for detecting memory leaks
    Scholz, B
    Blieberger, J
    Fahringer, T
    [J]. ACM SIGPLAN NOTICES, 1999, 34 (11) : 104 - 113
  • [4] Frequency domain analysis for detecting pipeline leaks
    Lee, PJ
    Vítkovsky, JP
    Lambert, MF
    Simpson, AR
    Liggett, JA
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2005, 131 (07): : 596 - 604
  • [5] Combining static and dynamic data flow analysis: a hybrid approach for detecting data leaks in Java']Java applications
    Mongiovi, M.
    Giannone, G.
    Fornaia, A.
    Pappalardo, G.
    Tramontana, E.
    [J]. 30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, : 1573 - 1579
  • [6] Data Analytics Applied to Coal Fired Boilers for Detecting Leaks
    Indrawan, Natarianto
    Panday, Rupendranath
    Shadle, Lawrence J.
    Chitnis, Umesh K.
    [J]. PROCEEDINGS OF THE ASME 2020 POWER CONFERENCE (POWER2020), 2020,
  • [7] Detecting leaks with helium
    Valenti, M
    [J]. MECHANICAL ENGINEERING, 1996, 118 (02) : 44 - 44
  • [8] Detecting leaks underground
    Rafferty, E
    Shelley, S
    [J]. CHEMICAL ENGINEERING, 1997, 104 (08) : 32 - 33
  • [9] DETECTING MOISTURE LEAKS
    Menniti, Daniel T.
    [J]. Menniti, Daniel T., 1600, Palladian Publications (25): : 65 - 68
  • [10] Detecting leaks underground
    [J]. Chemical Engineering (New York), 1997, 104 (08):