THE IMPROVED SYNERGETIC RETRIEVAL OF AEROSOL PROPERTIES ALGORITHM

被引:1
|
作者
He, Xingwei [1 ,3 ]
Xue, Yong [1 ,2 ]
Guang, Jie [1 ]
Yang, Leiku [4 ]
Mei, Linlu [1 ,3 ]
Mei, Linlu [1 ,3 ]
Liu, Jia [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100101, Peoples R China
[2] London Metropolitan Univ, Fac Life Sci & Comp, London N7 8DB, England
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Beijing Normal Univ, Sch Geog, Beijing 100875, Peoples R China
关键词
aerosol optical depth (AOD); Synergetic Retrieval of Aerosol Properties (SRAP); quality assurance; gas absorption correction; ALBEDO; MODIS;
D O I
10.1109/IGARSS.2013.6721226
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years the satellite monitoring capabilities in particular to derive maps of aerosol optical depth (AOD) have increased tremendously. There are many aerosol retrieval algorithms for different satellites and sensors such as Dark- Target method (DT), Deep Blue, etc. In this paper, we used an improved approach called the Synergetic Retrieval of Aerosol Properties (SRAP) method to retrieve aerosol properties over land surfaces by using the MODIS data. The improvement of the SRAP method include the following respects: 1) Considering the importance of gas absorption correction, we use ancillary data acquired from National Center for Environmental Prediction (NCEP) analyses to correct the effect of gas absorption. 2) A new cloud mask based on a spatial variability test as well as the absolute value at the 0.47 mu m and the 1.38 mu m bands were implemented in the SRAP algorithm.
引用
收藏
页码:593 / 596
页数:4
相关论文
共 50 条
  • [1] China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm
    Xue, Yong
    He, Xingwei
    Xu, Hui
    Guang, Jie
    Guo, Jianping
    Mei, Linlu
    [J]. ATMOSPHERIC ENVIRONMENT, 2014, 95 : 45 - 58
  • [2] Improvements of synergetic aerosol retrieval for ENVISAT
    Holzer-Popp, T.
    Schroedter-Homscheidt, M.
    Breitkreuz, H.
    Martynenko, D.
    Klueser, L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (24) : 7651 - 7672
  • [3] An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet
    Taylor, Thomas E.
    L'Ecuyer, Tristan S.
    Slusser, James R.
    Stephens, Graeme L.
    Goering, Christian D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D3)
  • [4] Understanding the aerosol information content in multi-spectral reflectance measurements using a synergetic retrieval algorithm
    Martynenko, D.
    Holzer-Popp, T.
    Elbern, H.
    Schroedter-Homscheidt, M.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2010, 3 (06) : 1589 - 1598
  • [5] Synergetic radar and lidar algorithm for the retrieval of radiative and microphysical properties in ice clouds
    Tinel, C
    Testud, J
    Protat, A
    Pelon, J
    [J]. REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE VII, 2003, 4882 : 463 - 473
  • [6] The GRAPE aerosol retrieval algorithm
    Thomas, G. E.
    Poulsen, C. A.
    Sayer, A. M.
    Marsh, S. H.
    Dean, S. M.
    Carboni, E.
    Siddans, R.
    Grainger, R. G.
    Lawrence, B. N.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2009, 2 (02) : 679 - 701
  • [7] AN IMPROVED ALGORITHM FOR RETRIEVAL OF AEROSOL OPTICAL PROPERTIES OVER THE YELLOW SEA FROM GEOSTATIONARY OCEAN COLOR IMAGER
    Zhang, Ya-nan
    Zheng, Xiao-shen
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4077 - 4079
  • [8] An improved synergetic algorithm for image classification
    Hogg, T
    Talhami, H
    Rees, D
    [J]. PATTERN RECOGNITION, 1998, 31 (12) : 1893 - 1903
  • [9] An Improved DDV Algorithm for the Retrieval of Aerosol Optical Depth From NOAA/AVHRR Data
    Li, Ruibo
    Sun, Lin
    Yu, Huiyong
    Wei, Jing
    Tian, Xinpeng
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (05) : 1141 - 1152
  • [10] Retrieval of Atmospheric Aerosol Optical Depth with an Improved Algorithm Over East China Sea
    Wang, Yi
    Xiang, Jie
    Zhou, Zeming
    [J]. GEO-INFORMATICS IN RESOURCE MANAGEMENT AND SUSTAINABLE ECOSYSTEM, 2016, 569 : 366 - 373