Nonequilibrium hard-disk packings with controlled orientational order

被引:43
|
作者
Kansal, AR
Truskett, TM
Torquato, S [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
[3] Princeton Univ, Mat Inst, Princeton, NJ 08544 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2000年 / 113卷 / 12期
关键词
D O I
10.1063/1.1289238
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper addresses one of the fundamental questions in the theory of hard-disk packings-how order within a system relates to packing density. The algorithm presented is a seed-based, growth protocol in which new disks are added sequentially to the surface of a growing cluster. The angular position of the new disk is chosen based on the minimization of an objective function designed to control order, as measured by the global bond-orientational order parameter psi(6), which varies between 0 and 1 (with 1 indicating perfect hexagonal close-packed order). Modifying the objective function allows the final packing fraction to be biased while maintaining tight control over psi(6). Inside of the range 0 less than or equal to psi(6)less than or equal to 0.70, the targeted order parameter psi(6) is achieved to within two decimal places of accuracy. Furthermore, it is found that random structures (psi(6)similar to 0.01) can be generated with packing fractions in the range 0.40 less than or equal to eta less than or equal to 0.77. Interestingly, the algorithm can produce nonequilibrium hard-disk configurations that are considerably more disordered than those typical of the equilibrium fluid. (C) 2000 American Institute of Physics. [S0021-9606(00)50436-X].
引用
收藏
页码:4844 / 4851
页数:8
相关论文
共 50 条
  • [1] Orientational order of the two-dimensional hard-disk system
    Jaster, A
    [J]. EUROPHYSICS LETTERS, 1998, 42 (03): : 277 - 281
  • [2] Frictional indeterminancy of forces in hard-disk packings
    Unger, T
    Kertész, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (29): : 5623 - 5630
  • [3] Geometric frustration of hard-disk packings on cones
    Sun, Jessica H.
    Plummer, Abigail
    Zhang, Grace H.
    Nelson, David R.
    Manoharan, Vinothan N.
    [J]. PHYSICAL REVIEW E, 2023, 108 (05)
  • [4] Sparse Hard-Disk Packings and Local Markov Chains
    Hoellmer, Philipp
    Noirault, Nicolas
    Li, Botao
    Maggs, A. C.
    Krauth, Werner
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (03)
  • [5] Sparse Hard-Disk Packings and Local Markov Chains
    Philipp Höllmer
    Nicolas Noirault
    Botao Li
    A. C. Maggs
    Werner Krauth
    [J]. Journal of Statistical Physics, 2022, 187
  • [6] Bond-orientational analysis of hard-disk and hard-sphere structures
    Kumar, VS
    Kumaran, V
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (20):
  • [7] ORDER AND DETERMINISTIC CHAOS IN HARD-DISK ARRAYS
    RUBINSTEIN, M
    NELSON, DR
    [J]. PHYSICAL REVIEW B, 1982, 26 (11) : 6254 - 6275
  • [8] Model for estimation of critical packing density in polydisperse hard-disk packings
    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
    不详
    [J]. Phys A Stat Mech Appl, 1-2 (230-238):
  • [9] Model for estimation of critical packing density in polydisperse hard-disk packings
    Jalali, P.
    Li, M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 381 : 230 - 238
  • [10] Existence of isostatic, maximally random jammed monodisperse hard-disk packings
    Atkinson, Steven
    Stillinger, Frank H.
    Torquato, Salvatore
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) : 18436 - 18441