Introducing an adaptive VLR algorithm using learning automata for multilayer perceptron

被引:0
|
作者
Mashoufi, B
Menhaj, MB
Motamedi, SA
Meybodi, MR
机构
[1] Amirkabir Univ Technol, Dept Elect Engn, Tehran 15914, Iran
[2] Amirkabir Univ Technol, Dept Comp Engn, Tehran 15914, Iran
[3] Oklahoma State Univ, Dept Comp Sci, Sch Elect & Comp Engn, Oklahoma City, OK USA
关键词
multilayer neural network; backpropagation; variable learning rate; learning automata;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the biggest limitations of BP algorithm is its low rate of convergence. The Variable Learning Rate (VLR) algorithm represents one of the well-known techniques that enhance the performance of the BP. Because the VLR parameters have important influence on its performance, we use learning automata (LA) to adjust them. The proposed algorithm named Adaptive Variable Learning Rate (AVLR) algorithm dynamically tunes the VLR parameters by learning automata according to the error changes. Simulation results on some practical problems such as sinusoidal function approximation, nonlinear system identification, phoneme recognition, Persian printed letter recognition helped us better to judge the merit of the proposed AVLR method.
引用
收藏
页码:594 / 609
页数:16
相关论文
共 50 条
  • [1] Fast learning using multilayer perceptron networks with adaptive centroid layer
    Lehtokangas, M
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2000, 14 (02) : 211 - 223
  • [2] AN ACCELERATED LEARNING ALGORITHM FOR MULTILAYER PERCEPTRON NETWORKS
    PARLOS, AG
    FERNANDEZ, B
    ATIYA, AF
    MUTHUSAMI, J
    TSAI, WK
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (03): : 493 - 497
  • [3] Learning algorithm for multilayer morphological perceptron using cartesian genetic programming
    Ortiz, JL
    Piñeiro, RC
    [J]. Proceedings of the Eighth IASTED International Conference on Artificial Intelligence and Soft Computing, 2004, : 226 - 231
  • [4] Multilayer perceptron training using an evolutionary algorithm
    El Hamdi, Ridha
    Njah, Mohamed
    Chtourou, Mohamed
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2008, 5 (04) : 305 - 312
  • [5] Using background knowledge in Multilayer Perceptron learning
    Lampinen, J
    Selonen, A
    [J]. SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 545 - 549
  • [6] LEARNING IN THE MULTILAYER PERCEPTRON
    BENEDICT, KA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (11): : 2643 - 2650
  • [7] Learn++: An incremental learning algorithm for multilayer perceptron networks
    Polikar, R
    Udpa, L
    Udpa, SS
    Honavar, V
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3414 - 3417
  • [8] Accelerating the multilayer perceptron learning with the Davidon Fletcher Powell algorithm
    Abid, Sabeur
    Mouelhi, Aymen
    Fnaiech, Farhat
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3389 - +
  • [9] Detecting Spinal Abnormalities Using Multilayer Perceptron Algorithm
    Begum, Arju Manara
    Mondal, M. Rubaiyat Hossain
    Podder, Prajoy
    Bharati, Subrato
    [J]. INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 654 - 664
  • [10] An adaptive learning to rank algorithm: Learning automata approach
    Torkestani, Javad Akbari
    [J]. DECISION SUPPORT SYSTEMS, 2012, 54 (01) : 574 - 583