Recurrence versus transience for weight-dependent random connection models

被引:12
|
作者
Gracar, Peter [1 ]
Heydenreich, Markus [2 ]
Moench, Christian [3 ]
Moerters, Peter [1 ]
机构
[1] Univ Cologne, Cologne, Germany
[2] Ludwig Maximilians Univ Munchen, Munich, Germany
[3] Johannes Gutenberg Univ Mainz, Mainz, Germany
来源
关键词
random-connection model; recurrence; transience; scale-free percolation; preferen-tial attachment; Boolean model; PERCOLATION; UNIQUENESS; CLUSTER;
D O I
10.1214/22-EJP748
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate random graphs on the points of a Poisson process in d-dimensional space, which combine scale-free degree distributions and long-range effects. Every Poisson point carries an independent random mark and given marks and positions of the points we form an edge between two points independently with a probability depending via a kernel on the two marks and the distance of the points. Different kernels allow the mark to play different roles, like weight, radius or birth time of a vertex. The kernels depend on a parameter-y, which determines the power-law exponent of the degree distributions. A further independent parameter ?? characterises the decay of the connection probabilities of vertices as their distance increases. We prove transience of the infinite cluster in the entire supercritical phase in regimes given by the parameters-y and ??, and complement these results by recurrence results if d = 2. Our results are particularly interesting for the soft Boolean graph model discussed in the preprint [arXiv:2108:11252] and the age-dependent random connection model recently introduced by Gracar et al. [Queueing Syst. 93.3-4 (2019)]
引用
收藏
页数:32
相关论文
共 50 条
  • [1] PERCOLATION PHASE TRANSITION IN WEIGHT-DEPENDENT RANDOM CONNECTION MODELS
    Gracar, Peter
    Luechtrath, Lukas
    Moerters, Peter
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (04) : 1090 - 1114
  • [2] A note on transience versus recurrence for a branching random walk in random environment
    den Hollander, F
    Menshikov, MV
    Popov, SY
    JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (3-4) : 587 - 614
  • [3] A Note on Transience Versus Recurrence for a Branching Random Walk in Random Environment
    F. den Hollander
    M. V. Menshikov
    S. Yu. Popov
    Journal of Statistical Physics, 1999, 95 : 587 - 614
  • [4] Random walk in cooling random environment: Recurrence versus transience and mixed fluctuations
    Avena, Luca
    Chino, Yuki
    da Costa, Conrado
    den Hollander, Frank
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 967 - 1009
  • [5] Persistent Random Walks. I. Recurrence Versus Transience
    Peggy Cénac
    Arnaud Le Ny
    Basile de Loynes
    Yoann Offret
    Journal of Theoretical Probability, 2018, 31 : 232 - 243
  • [6] Persistent Random Walks. I. Recurrence Versus Transience
    Cenac, Peggy
    Le Ny, Arnaud
    de Loynes, Basile
    Offret, Yoann
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 232 - 243
  • [7] On the recurrence and transience of state-dependent branching processes in random environment
    Albeverio, S
    Kozlov, MV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2003, 48 (04) : 575 - 591
  • [8] ON THE TRANSIENCE AND RECURRENCE OF RANDOM-WALK AND RANDOM ENVIRONMENT
    SUNYACH, C
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1987, 23 (04): : 613 - 626
  • [9] Recurrence and Transience of Random Walks¶in Random Environments on a Strip
    Erwin Bolthausen
    Ilya Goldsheid
    Communications in Mathematical Physics, 2000, 214 : 429 - 447
  • [10] Recurrence and transience of random walks in random environments on a strip
    Bolthausen, E
    Goldsheid, I
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) : 429 - 447