Boundary crisis in a 2D piece-wise smooth map

被引:6
|
作者
Ma, MQ [1 ]
Wang, WX [1 ]
He, DR [1 ]
机构
[1] Yangzhou Univ, Dept Phys, Coll Sci, Yangzhou 225002, Peoples R China
关键词
crisis; piece-wise smooth map; scaling law of life time;
D O I
10.7498/aps.49.1679
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper analytically discusses the characteristics of boundary crisis in a model of impact oscillator, and proves that the scaling behavior of the life time after crisis follows the rule tau-epsilon(-gamma) and gamma = ln\beta(2)\/ln\beta(1)beta(2)\. Here beta(1) and beta(2) are the unstable and stable eigenvalues, respectively,of a saddle node on the basin boundary of a chaotic attractor. This rule is completely different from that in everywhere-smooth maps.
引用
收藏
页码:1679 / 1682
页数:4
相关论文
共 6 条
  • [1] GRAZING BIFURCATIONS IN IMPACT OSCILLATORS
    CHIN, W
    OTT, E
    NUSSE, HE
    GREBOGI, C
    [J]. PHYSICAL REVIEW E, 1994, 50 (06) : 4427 - 4444
  • [2] CHAOTIC ATTRACTORS IN CRISIS
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1982, 48 (22) : 1507 - 1510
  • [3] CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICA D, 1983, 7 (1-3): : 181 - 200
  • [4] CRITICAL EXPONENTS FOR CRISIS-INDUCED INTERMITTENCY
    GREBOGI, C
    OTT, E
    ROMEIRAS, F
    YORKE, JA
    [J]. PHYSICAL REVIEW A, 1987, 36 (11): : 5365 - 5380
  • [5] PARKER TS, 1989, PRACTICAL NUMERICAL
  • [6] WANG WX, 2000, J YANGZHOU U