Fusion of visible and thermal images using support vector machines

被引:0
|
作者
Khan, Adnan Mujahid [1 ]
Khan, Asifullah [2 ]
机构
[1] Fac Comp Sci & Engn, GIK Inst, Swabi, Pakistan
[2] PIEAS, Dept Comp & Informat Sci, Islamabad, Pakistan
关键词
image fusion; thermal & visible images; support vector machines (SVM); kernel principal component analysis (K-PCA);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Both in military and civilian applications, an increasing interest is being shown in fusing infra-red and visible images. In this paper, we propose a novel pixel-based infra-red and visible image fusion algorithm exploiting Discrete Wavelet Frame Transform (DWFT), Kernel Principle Component Analysis (K-PCA) and Support Vector Machine (SVM). Strong characteristics of DWFT such as translation invariant signal representation and directional selectivity add additional support to fusion process. K-PCA exploits the low frequency features mainly attributed from infra-red image, while SVM, on the other hand, exploits detail regions. Evaluations of the proposed technique through an image database show that the proposed method gives promising results both objectively and visually.
引用
收藏
页码:146 / +
页数:2
相关论文
共 50 条
  • [1] Classification of Thermal Breast Images Using Support Vector Machines
    Sekmenoglu, Ibrahim
    Akgul, Mehmet Mert
    Icer, Semra
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [2] Segmentation of images using support vector machines
    Chen, QY
    Yang, Q
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3304 - 3306
  • [3] Distributed data fusion using support vector machines
    Challa, S
    Palaniswami, M
    Shilton, A
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL II, 2002, : 881 - 885
  • [4] Color images segmentation using the support vector machines
    Gómez-Moreno, H.
    Gil-Jiménez, P.
    Lafuente-Arroyo, S.
    Vicen-Bueno, R.
    Sánchez-Montero, R.
    Recent Advances in Intelligent Systems and Signal Processing, 2003, : 151 - 155
  • [5] Classification of Endoscopic Images using Support Vector Machines
    Surangsrirat, Decho
    Tapia, Moiez A.
    Zhao, Weizhao
    IEEE SOUTHEASTCON 2010: ENERGIZING OUR FUTURE, 2010, : 436 - 439
  • [6] Recognition of facial images using support vector machines
    Kim, KI
    Kim, J
    Jung, K
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 468 - 471
  • [7] Segmentation of ultrasonic images using Support Vector Machines
    Kotropoulos, C
    Pitas, I
    PATTERN RECOGNITION LETTERS, 2003, 24 (4-5) : 715 - 727
  • [8] Segmentation of Fingerprint Images Using Support Vector Machines
    Zhao, Shijun
    Hao, Xiaowei
    Li, Xiaodong
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 423 - +
  • [9] Segmenting images with support vector machines
    Reyna, RA
    Hernandez, N
    Esteve, D
    Cattoen, M
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2000, : 820 - 823
  • [10] Fusing images with different focuses using support vector machines
    Li, ST
    Kwok, JTY
    Tsang, IWH
    Wang, YN
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (06): : 1555 - 1561