Global dynamics of an axially moving buckled beam

被引:15
|
作者
Ghayesh, Mergen H. [1 ]
Amabili, Marco [1 ]
Farokhi, Hamed [1 ]
机构
[1] McGill Univ, Dept Mech Engn, Montreal, PQ H3A 0C3, Canada
关键词
Axially moving beams; bifurcations; buckling; chaos; nonlinear dynamics; FINITE-ELEMENT ANALYSIS; TIME-VARYING VELOCITY; STEADY-STATE RESPONSE; NONLINEAR VIBRATIONS; TRANSVERSAL VIBRATIONS; CONVEYOR BELT; VISCOELASTIC BEAM; STABILITY; BIFURCATION; SPEED;
D O I
10.1177/1077546313486282
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A parametric study for post-buckling analysis of an axially moving beam is conducted considering four different axial speeds in the supercritical regime. At critical speed, the trivial equilibrium configuration of this conservative system becomes unstable and the system diverges to a new non-trivial equilibrium configuration via a pitchfork bifurcation. Post-buckling analysis is conducted considering the system undergoing a transverse harmonic excitation. In order to obtain the equations of motion about the buckled state, first the equation of motion about the trivial equilibrium position is obtained and then transformed to the new coordinate, i.e. post-buckling configuration. The equations are then discretized using the Galerkin scheme, resulting in a set of nonlinear ordinary differential equations. Using direct time integration, the global dynamics of the system is obtained and shown by means of bifurcation diagrams of Poincare maps. Other plots such as time traces, phase-plane diagrams, and Poincare sections are also presented to analyze the dynamics more precisely.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 50 条
  • [1] Thermo-mechanical nonlinear dynamics of a buckled axially moving beam
    Kazemirad, Siavash
    Ghayesh, Mergen H.
    Amabili, Marco
    ARCHIVE OF APPLIED MECHANICS, 2013, 83 (01) : 25 - 42
  • [2] Thermo-mechanical nonlinear dynamics of a buckled axially moving beam
    Siavash Kazemirad
    Mergen H. Ghayesh
    Marco Amabili
    Archive of Applied Mechanics, 2013, 83 : 25 - 42
  • [3] Coupled global dynamics of an axially moving viscoelastic beam
    Ghayesh, Mergen H.
    Amabili, Marco
    Farokhi, Hamed
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 51 : 54 - 74
  • [4] DYNAMICS OF AN AXIALLY MOVING BEAM
    TABARROK, B
    LEECH, CM
    KIM, YI
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1974, 297 (03): : 201 - 220
  • [5] Nonlinear dynamics of axially moving viscoelastic beams over the buckled state
    Ghayesh, Mergen H.
    Amabili, Marco
    COMPUTERS & STRUCTURES, 2012, 112 : 406 - 421
  • [6] DYNAMICS OF AN AXIALLY MOVING BEAM SUBMERGED IN A FLUID
    TALEB, IA
    MISRA, AK
    JOURNAL OF HYDRONAUTICS, 1981, 15 (1-4): : 62 - 66
  • [7] Nonlinear dynamics and bifurcations of an axially moving beam
    Pellicano, F
    Vestroni, F
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2000, 122 (01): : 21 - 30
  • [8] Transient Dynamics of an Axially Moving Beam Subject to Continuously Distributed Moving Mass
    Jie Song
    Sujie Xian
    Hongliang Hua
    Zhilin Wu
    Kun Liu
    Journal of Vibration Engineering & Technologies, 2023, 11 : 3281 - 3292
  • [9] Transient Dynamics of an Axially Moving Beam Subject to Continuously Distributed Moving Mass
    Song, Jie
    Xian, Sujie
    Hua, Hongliang
    Wu, Zhilin
    Liu, Kun
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (07) : 3281 - 3292
  • [10] DYNAMICS AND STABILITY ANALYSIS OF AN AXIALLY MOVING BEAM IN AXIAL FLOW
    Hao, Yan
    Dai, Huliang
    Qiao, Ni
    Zhou, Kun
    Wang, Lin
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2020, 15 (01) : 37 - 60