Porous Graphene-Confined Fe-K as Highly Efficient Catalyst for CO2 Direct Hydrogenation to Light Olefins

被引:120
|
作者
Wu, Tijun [1 ,2 ]
Lin, Jun [3 ]
Cheng, Yi [1 ,2 ]
Tian, Jing [1 ,2 ]
Wang, Shunwu [1 ,2 ]
Xie, Songhai [1 ,2 ]
Pei, Yan [1 ,2 ]
Yan, Shirun [1 ,2 ]
Qiao, Minghua [1 ,2 ]
Xu, Hualong [1 ,2 ]
Zong, Baoning [4 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Key Lab Nucl Anal Tech, Shanghai 201800, Peoples R China
[4] SINOPEC, Res Inst Petr Proc, State Key Lab Catalyt Mat & Chem Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
porous graphene; potassium-promoted iron; CO2; hydrogenation; light olefins; FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; IRON CATALYSTS; REDUCTION; CONVERSION; STRATEGIES; ENERGY; FUELS;
D O I
10.1021/acsami.8b05411
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We devised iron-based catalysts with honeycomb structured graphene (HSG) as the support and potassium as the promoter for CO2 direct hydrogenation to light olefins (CO2-FTO). Over the optimal FeK1.5/HSG catalyst, the iron time yield of light olefins amounted to 73 mu mol(CO2) g(Fe)(-1) s(-1) with high selectivity of 59%. No obvious deactivation occurred within 120 h on stream. The excellent catalytic performance is attributed to the confinement effect of the porous HSG on the sintering of the active sites and the promotion effect of potassium on the activation of inert CO2 and the formation of iron carbide active for CO2-FTO.
引用
收藏
页码:23439 / 23443
页数:5
相关论文
共 50 条
  • [1] Deactivation and regeneration of Fe-K/alumina catalyst in CO2 hydrogenation
    Hwang, JS
    Jun, KW
    Lee, KW
    APPLIED CATALYSIS A-GENERAL, 2001, 208 (1-2) : 217 - 222
  • [2] Characterization studies of the Fe-K/alumina catalyst used in CO2 hydrogenation.
    Hwang, JS
    Jun, KW
    Lee, KW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U261 - U261
  • [3] Promotion of surface oxygen vacancies on the light olefins synthesis from catalytic CO2 hydrogenation over Fe-K/ZrO2 catalysts
    Gu, Hao
    Ding, Jie
    Zhong, Qin
    Zeng, Yiqing
    Song, Fujiao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 11808 - 11816
  • [4] Synthesis of Light Olefins from CO2 Hydrogenation on Fe/ZSM-5 catalyst
    Yang, Lin
    Li, Jing
    Cao, Jianxin
    APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 463 - 466
  • [5] Catalytic hydrogenation of CO2 into hydrocarbons: Support effects on Fe and Fe-K catalysts.
    Jun, KW
    Lee, SJ
    Choi, MJ
    Lee, KW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 122 - FUEL
  • [6] Fe-Co-K/ZrO2 Catalytic Performance of CO2 Hydrogenation to Light Olefins
    Liu Qiang
    Ding Jie
    Ji Guojing
    Hu Juanmin
    Gu Hao
    Zhong Qin
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (10) : 1053 - 1058
  • [7] Highly active Fe-Co-Zn/K-Al2O3 catalysts for CO2 hydrogenation to light olefins
    Witoon, Thongthai
    Chaipraditgul, Nawapat
    Numpilai, Thanapha
    Lapkeatseree, Vittawin
    Ayodele, Bamidele Victor
    Cheng, Chin Kui
    Siri-Nguan, Nuchanart
    Sornchamni, Thana
    Limtrakul, Jumras
    CHEMICAL ENGINEERING SCIENCE, 2021, 233
  • [8] MOFs-Derived Fe-Co Bimetallic Catalyst for Selective CO2 Hydrogenation to Light Olefins
    Xu, Fan
    Yang, Dandan
    Jin, Daoming
    Meng, Xin
    Zhao, Rui
    Dai, Wenhua
    Xin, Zhong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (48) : 20800 - 20811
  • [9] Promotion effects of Ce added Fe–Zr–K on CO2 hydrogenation to light olefins
    Jianli Zhang
    Xiaojuan Su
    Xu Wang
    Qingxiang Ma
    Subing Fan
    Tian-Sheng Zhao
    Reaction Kinetics, Mechanisms and Catalysis, 2018, 124 : 575 - 585
  • [10] Heteroatom induced synthesis of FeO-Fe3C confined within F-doped graphene shell for efficient CO2 hydrogenation to light olefins
    Zhang, Pengze
    Han, Fei
    Yan, Jingyu
    Qiao, Xianliang
    Zhu, Mingyuan
    Guan, Qingxin
    Li, Wei
    CHEMICAL ENGINEERING JOURNAL, 2023, 477