Discrete configurational mechanics for the computational study of atomistic fracture mechanics

被引:1
|
作者
Birang, O. S. Elmira [1 ,2 ]
Steinmann, Paul [1 ,3 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Appl Mech LTM, Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Cent Inst Sci Comp ZISC, Erlangen, Germany
[3] Univ Glasgow, Glasgow Computat Engn Ctr, Glasgow City, Scotland
来源
FORCES IN MECHANICS | 2021年 / 2卷
关键词
Atomistic configurational mechanics; Fracture criterion; Crack propagation; MATERIAL SETTINGS; MATERIAL FORCES;
D O I
10.1016/j.finmec.2020.100009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We formulate discrete configurational mechanics in an atomistic setting, discuss the corresponding computa-tional details, and demonstrate its utility via computational analyses of atomistic fracture mechanics problems. To this end, we first propose a novel Configurational-Force-Criterion (CFC) to predict crack propagation into an atomic crystalline lattice. Thereby, specifically, the CFC relies on comparing discrete configurational forces with a corresponding Crack-Propagation-Threshold (CPT) in the quasi-static approximation of atomistic systems at zero Kelvin. Next, based on the CFC, we introduce a quasi-static computational atomistic crack propagation algorithm. Therein, whenever an atomic pair meets the CFC, we modify the lattice connectivity by deleting the correspond-ing interatomic bond, thus resulting in true irreversibility, i.e. dissipation upon crack extension. Finally, based on different choices for the magnitude of the CPT employed in the CFC, we demonstrate suitability and versatility of discrete configurational mechanics in analyzing atomistic fracture mechanics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On the impact of configurational mechanics on computational mechanics
    Kuhl, E
    Steinmann, P
    [J]. CONFIGURATIONAL MECHANICS, 2004, : 15 - 29
  • [2] On configurational forces at boundaries in fracture mechanics
    Fischer, F. D.
    Simha, N. K.
    Predan, J.
    Schoengrundner, R.
    Kolednik, O.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2012, 174 (01) : 61 - 74
  • [3] On configurational forces at boundaries in fracture mechanics
    F. D. Fischer
    N. K. Simha
    J. Predan
    R. Schöngrundner
    O. Kolednik
    [J]. International Journal of Fracture, 2012, 174 : 61 - 74
  • [4] Secret and joy of configurational mechanics: From foundations in continuum mechanics to applications in computational mechanics
    Steinmann, Paul
    Scherer, Michael
    Denzer, Ralf
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (08): : 614 - 630
  • [5] Atomistic Determination of Fracture Mechanics Parameters
    Stepanova, L., V
    Belova, O. N.
    Bronnikov, S. A.
    [J]. XXIIND WINTER SCHOOL ON CONTINUOUS MEDIA MECHANICS, 2021, 32 : 261 - 272
  • [6] On the application of a lattice method to configurational and fracture mechanics
    Mohammadipour, Amir
    Willam, Kaspar
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2017, 106 : 152 - 163
  • [7] On discrete models in fracture mechanics
    Slepyan, L. I.
    [J]. MECHANICS OF SOLIDS, 2010, 45 (06) : 803 - 814
  • [8] Discrete fractal fracture mechanics
    Wnuk, Michael P.
    Yavari, Arash
    [J]. ENGINEERING FRACTURE MECHANICS, 2008, 75 (05) : 1127 - 1142
  • [9] On discrete models in fracture mechanics
    L. I. Slepyan
    [J]. Mechanics of Solids, 2010, 45 : 803 - 814
  • [10] Computational and experimental fracture mechanics
    Forcier, Johanne
    [J]. Canadian Aeronautics and Space Journal, 1995, 41 (03):