Evaluation of a Deep-Reinforcement-Learning-based Controller for the Control of an Autonomous Underwater Vehicle

被引:2
|
作者
Sola, Yoann [1 ]
Chaffre, Thomas [1 ,2 ]
le Chenadec, Gilles [1 ]
Sammut, Karl [2 ]
Clement, Benoit [1 ,2 ]
机构
[1] ENSTA Bretagne, Lab STICC UMR CNRS 6285, Brest, France
[2] Flinders Univ S Australia, Coll Sci & Engn, Ctr Maritime Engn, Adelaide, SA 5042, Australia
关键词
AUV; control theory; deep reinforcement learning; simulation; precision; thrusters usage; LEVEL CONTROL;
D O I
10.1109/IEEECONF38699.2020.9389415
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The development of efficient controllers in underwater environments has long been a challenging topic, hindered mostly by the lack of understanding in process variations under these conditions. It is without a doubt difficult for an autonomous underwater vehicle to behave as instructed while being constantly trying to compensate for the disturbing forces that act on its body. Recently, noteworthy improvements have been made in the model-free control theory, allowing the use of Reinforcement-Learning-based controllers in terrestrial and aerial robotic contexts. In contrast, the underwater control field has been largely dominated by controllers based on the Proportional-Integral-Derivative structure. In this paper we compare a PID controller with a leading-edge Deep Reinforcement Learning algorithm, the Soft Actor-Critic. These controllers have been tested within marine robotics simulations, using a realistic simulated environment including external disturbances for a waypoint tracking mission. The results obtained reveal the superiority of PID controllers in terms of success rate and precision, but not in terms of thruster usage. Future works will include the test of these controllers with an underactuated AUV, to demonstrate the guidance abilities of the learning approach.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A general motion controller based on deep reinforcement learning for an autonomous underwater vehicle with unknown disturbances
    Huang, Fei
    Xu, Jian
    Wu, Di
    Cui, Yunfei
    Yan, Zheping
    Xing, Wen
    Zhang, Xun
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 117
  • [2] Deep Reinforcement Learning Based Optimal Trajectory Tracking Control of Autonomous Underwater Vehicle
    Yu, Runsheng
    Shi, Zhenyu
    Huang, Chaoxing
    Li, Tenglong
    Ma, Qiongxiong
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4958 - 4965
  • [3] Deep Reinforcement Learning for Vectored Thruster Autonomous Underwater Vehicle Control
    Liu, Tao
    Hu, Yuli
    Xu, Hui
    [J]. COMPLEXITY, 2021, 2021
  • [4] Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid Operations
    Duan, Jiajun
    Shi, Di
    Diao, Ruisheng
    Li, Haifeng
    Wang, Zhiwei
    Zhang, Bei
    Bian, Desong
    Yi, Zhehan
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) : 814 - 817
  • [5] Deep reinforcement learning based path tracking controller for autonomous vehicle
    Chen, I-Ming
    Chan, Ching-Yao
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (2-3) : 541 - 551
  • [6] CDDPG: A Deep-Reinforcement-Learning-Based Approach for Electric Vehicle Charging Control
    Zhang, Feiye
    Yang, Qingyu
    An, Dou
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05) : 3075 - 3087
  • [7] Deep reinforcement learning for adaptive path planning and control of an autonomous underwater vehicle
    Hadi, Behnaz
    Khosravi, Alireza
    Sarhadi, Pouria
    [J]. APPLIED OCEAN RESEARCH, 2022, 129
  • [8] Path-following optimal control of autonomous underwater vehicle based on deep reinforcement learning
    Wang, Zhanyuan
    Li, Yulong
    Ma, Caipeng
    Yan, Xun
    Jiang, Dapeng
    [J]. OCEAN ENGINEERING, 2023, 268
  • [9] Dynamic Target Tracking of Autonomous Underwater Vehicle Based on Deep Reinforcement Learning
    Shi, Jiaxiang
    Fang, Jianer
    Zhang, Qizhong
    Wu, Qiuxuan
    Zhang, Botao
    Gao, Farong
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [10] Three-Dimensional Path Tracking Control of Autonomous Underwater Vehicle Based on Deep Reinforcement Learning
    Sun, Yushan
    Zhang, Chenming
    Zhang, Guocheng
    Xu, Hao
    Ran, Xiangrui
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2019, 7 (12)