Generating Instantiated Argument Graphs from Probabilistic Information

被引:5
|
作者
Hunter, Anthony [1 ]
机构
[1] UCL, London, England
来源
ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2020年 / 325卷
关键词
SEMANTICS;
D O I
10.3233/FAIA200165
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The epistemic approach to probabilistic argumentation assigns belief to arguments. To better understand this approach, we consider structured arguments. Our approach is to start with a probability distribution, and generate an argument graph containing structured arguments with a probability assignment. We construct arguments directly from the probability distribution, rather than a knowledgebase, and then consider methods for selecting the arguments and counterarguments to present in the argument graph. This provides mechanisms for managing uncertainty in argumentation, and for argument-based explanations of probability distributions (that might come from data or from beliefs of an agent).
引用
收藏
页码:769 / 776
页数:8
相关论文
共 50 条
  • [1] Probabilistic Argument Graphs for Argumentation Lotteries
    Hunter, Anthony
    Thimm, Matthias
    COMPUTATIONAL MODELS OF ARGUMENT, 2014, 266 : 313 - 324
  • [2] Senses of 'argument' in instantiated argumentation frameworks
    Wyner, Adam
    Bench-Capon, Trevor
    Dunne, Paul
    Cerutti, Federico
    ARGUMENT & COMPUTATION, 2015, 6 (01) : 50 - 72
  • [3] Generating Fake Documents Using Probabilistic Logic Graphs
    Han, Qian
    Molinaro, Cristian
    Picariello, Antonio
    Sperli, Giancarlo
    Subrahmanian, V. S.
    Xiong, Yanhai
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (04) : 2428 - 2441
  • [4] PROBABILISTIC ARGUMENT FROM EVIL
    PLANTINGA, A
    PHILOSOPHICAL STUDIES, 1979, 35 (01) : 1 - 53
  • [5] Dynamic propagation in causal probabilistic networks with instantiated variables
    Hejlesen, OK
    Andreassen, S
    Anderson, SK
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1995, 934 : 151 - 162
  • [6] Generating Sparse Probabilistic Graphs for Efficient Planning in Uncertain Environments
    Veys, Yasmin
    Kurtz, Martina Stadler
    Roy, Nicholas
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 133 - 139
  • [7] Complete performance graphs in probabilistic information retrieval
    Sebe, N
    Huijsmans, DP
    Tian, Q
    Gevers, T
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 2, PROCEEDINGS, 2004, 3332 : 229 - 237
  • [8] Efficient Information Flow Maximization in Probabilistic Graphs
    Frey, Christian
    Zufle, Andreas
    Emrich, Tobias
    Renz, Matthias
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (05) : 880 - 894
  • [9] Generating and Explaining Corner Cases Using Learnt Probabilistic Lane Graphs
    Maci, Enrik
    Howard, Rhys
    Kunze, Lars
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 4201 - 4208
  • [10] GENERATING LANGUAGE FROM CONCEPTUAL GRAPHS
    SOWA, JF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1983, 9 (01) : 29 - 43