Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

被引:24
|
作者
Jin, Cui [1 ]
Xiao, Xiangming [1 ,2 ]
Dong, Jinwei [1 ]
Qin, Yuanwei [1 ]
Wang, Zongming [3 ]
机构
[1] Univ Oklahoma, Ctr Spatial Anal, Dept Microbiol & Plant Biol, Norman, OK 73019 USA
[2] Fudan Univ, Inst Biodivers Sci, Shanghai 200433, Peoples R China
[3] Chinese Acad Sci, Northeast Inst Geog & Agr Ecol, Changchun 130102, Peoples R China
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
phenology; flooding; transplanting; ripening; land use; FOREST DISTURBANCE; CROPPING SYSTEMS; DETECTING TRENDS; MEKONG DELTA; MODIS DATA; AREA; COVER; CLASSIFICATION; AGRICULTURE; IRRIGATION;
D O I
10.1007/s11707-015-0518-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010-2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China-one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security.
引用
收藏
页码:49 / 62
页数:14
相关论文
共 50 条
  • [1] Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China
    Cui JIN
    Xiangming XIAO
    Jinwei DONG
    Yuanwei QIN
    Zongming WANG
    [J]. Frontiers of Earth Science., 2016, 10 (01) - 62
  • [2] Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China
    Cui Jin
    Xiangming Xiao
    Jinwei Dong
    Yuanwei Qin
    Zongming Wang
    [J]. Frontiers of Earth Science, 2016, 10 : 49 - 62
  • [3] Mapping paddy rice agriculture in southern China using multi-temporal MODIS images
    Xiao, XM
    Boles, S
    Liu, JY
    Zhuang, DF
    Frolking, S
    Li, CS
    Salas, W
    Moore, B
    [J]. REMOTE SENSING OF ENVIRONMENT, 2005, 95 (04) : 480 - 492
  • [4] Automatic and adaptive paddy rice mapping using Landsat images: Case study in Songnen Plain in Northeast China
    Qiu, Bingwen
    Lu, Difei
    Tang, Zhenghong
    Chen, Chongcheng
    Zou, Fengli
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 598 : 581 - 592
  • [5] TEMPORA-SPATIAL-PROBABILISTIC MODEL BASED FOR MAPPING PADDY RICE USING MULTI-TEMPORAL LANDSAT IMAGES
    Sun, Peijun
    Xie, Dengfeng
    Zhang, Jinshui
    Zhu, Xiufang
    Wei, Fenghua
    Yuan, Zhoumiqi
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 2086 - 2089
  • [6] Dynamic Mapping of Paddy Rice Using Multi-Temporal Landsat Data Based on a Deep Semantic Segmentation Model
    Du, Meiqi
    Huang, Jingfeng
    Wei, Pengliang
    Yang, Lingbo
    Chai, Dengfeng
    Peng, Dailiang
    Sha, Jinming
    Sun, Weiwei
    Huang, Ran
    [J]. AGRONOMY-BASEL, 2022, 12 (07):
  • [7] Bayesian networks for mapping salinity using the multi-temporal Landsat TM imagery
    Huo, DM
    Zhang, JX
    Sun, JB
    Liu, GH
    [J]. NEURAL NETWORK AND DISTRIBUTED PROCESSING, 2001, 4555 : 93 - 98
  • [8] Mapping crop cover using multi-temporal Landsat 8 OLI imagery
    Sonobe, Rei
    Yamaya, Yuki
    Tani, Hiroshi
    Wang, Xiufeng
    Kobayashi, Nobuyuki
    Mochizuki, Kan-ichiro
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (15) : 4348 - 4361
  • [9] Mapping Paddy Rice Varieties Using Multi-temporal RADARSAT SAR Images
    Jang, Min-Won
    Kim, Yi-Hyun
    Park, No-Wook
    Hong, Suk-Young
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2012, 28 (06) : 653 - 660
  • [10] Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery
    Zhao, Yuanyuan
    Feng, Duole
    Jayaraman, Durai
    Belay, Daniel
    Sebrala, Heiru
    Ngugi, John
    Maina, Eunice
    Akombo, Rose
    Otuoma, John
    Mutyaba, Joseph
    Kissa, Sam
    Qi, Shuhua
    Assefa, Fiker
    Oduor, Nellie Mugure
    Ndawula, Andrew Kalema
    Li, Yanxia
    Gong, Peng
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 66 : 116 - 125