Orientation dependence of shock-induced change of habit plane for the 1/2<111> dislocation loop and plasticity in tungsten

被引:15
|
作者
Guo, Long [1 ,2 ]
Wang, Liang [3 ]
Gao, Ning [4 ,6 ]
Chen, Yangchun [2 ]
Liu, Beibei [1 ]
Hu, Wangyu [1 ]
Xiao, Shifang [2 ]
Wang, Kun [1 ]
Gao, Fei [5 ]
Deng, Huiqiu [2 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
[3] Hunan Agr Univ, Coll Sci, Changsha 410128, Peoples R China
[4] Shandong Univ, Inst Frontier & Interdisciplinar Sci, Qingdao 266237, Shandong, Peoples R China
[5] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[6] Shandong Univ, Key Lab Particle Phys & Particle Irradiat, MOE, Qingdao 266237, Shandong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Tungsten; Dislocation loop; Shock wave; Nonequilibrium molecular dynamics; TRANSMISSION ELECTRON-MICROSCOPY; 316; STAINLESS-STEELS; IN-SITU; NEUTRON-IRRADIATION; SINGLE-CRYSTAL; INTERATOMIC POTENTIALS; DYNAMICS SIMULATIONS; RADIATION-DAMAGE; PHASE-TRANSITION; STRAIN-RATE;
D O I
10.1016/j.ijplas.2022.103329
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Tungsten (W) is a promising candidate material for future fusion reactors. The shock waves generated under high-energy neutron radiation can lead to the formation of prismatic interstitial dislocation loops (PIDLs). To understand the details of the mechanisms, the interaction between the shock waves and PIDL with Burgers vector of 1/2 < 111 > was studied by using nonequilibrium molecular dynamics (NEMD) simulation. The shock-induced change of habit plane for the 1/2 < 111 > PIDL and plasticity in W depend strongly on the crystallographic orientations. The driving force for changing the loop's habit plane is derived from the resolved shear stress (RSS). A new rotation mechanism is proposed, which can be used to predict the changing trend of PIDL's habit plane. The rotation angle of the habit plane for the 1/2 < 111 > dislocation loop is proportional to the RSS of the activated slip system. In this work, we also predict a source to induce the plasticity (e.g., deformation twin and dislocation network) observed in the experiment and discuss the nucleation, propagation and interaction of these deformations with different crystallographic orientation. The current results provide significant insights into the evolution of 1/ 2 < 111 > PIDL depending on the crystallographic orientation under shock loading.
引用
下载
收藏
页数:19
相关论文
共 7 条
  • [1] Atomistic simulation of 1/2&lt;111&gt; screw dislocations in BCC tungsten
    Fikar, J.
    Schaeublin, R.
    Bjorkas, C.
    1ST INTERNATIONAL CONFERENCE ON NEW MATERIALS FOR EXTREME ENVIRONMENTS, 2009, 59 : 247 - +
  • [2] One-Dimensional Glide Motion of "Naked" Nanoscale 1/2&lt;111&gt; Prismatic Dislocation Loops in Iron
    Arakawa, Kazuto
    Amino, Takafumi
    Isshiki, Minoru
    Mimura, Kouji
    Uchikoshi, Masahito
    Mori, Hirotaro
    ISIJ INTERNATIONAL, 2014, 54 (10) : 2421 - 2424
  • [3] Effect of Cr Concentration on 1/2 &lt;111&gt; to &lt;100&gt; Dislocation Loop Transformation in Fe-Cr alloys
    Zhang, Yaxuan
    Xiao, Ziqi
    Bai, Xian-Ming
    JOURNAL OF NUCLEAR MATERIALS, 2021, 543
  • [4] Nonplanar core structure of 1/2&lt;111&gt; screw dislocations: An anisotropic Peierls-Nabarro model
    Hu, Xiangsheng
    Huang, Minsheng
    Li, Zhenhuan
    MECHANICS OF MATERIALS, 2021, 156
  • [5] &lt;110&gt; Dislocation Junction Formation via the Coalescence between Nanoscale 1/2 &lt;111&gt; Prismatic Dislocation Loops in Iron
    Arakawa, Kazuto
    Amino, Takafumi
    Yasuda, Hidehiro
    Mori, Hirotaro
    ISIJ INTERNATIONAL, 2017, 57 (11) : 2065 - 2069
  • [6] Structure and mobility of the 1/2 &lt;111&gt; {112} edge dislocation in BCC iron studied by molecular dynamics
    Monnet, G.
    Terentyev, D.
    ACTA MATERIALIA, 2009, 57 (05) : 1416 - 1426
  • [7] Field-induced effect in the &lt;111&gt;-oriented 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystals
    Chen, KP
    Zhang, XW
    Zhao, XY
    Luo, HS
    MATERIALS LETTERS, 2006, 60 (13-14) : 1634 - 1639