Gaussian Mixture Model for Estimating Solar Irradiance Probability Density

被引:4
|
作者
Wahbah, Maisam [1 ]
EL-Fouly, Tarek H. M. [2 ]
Zahawi, Bashar [2 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Biomed Engn, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates
关键词
Gaussian mixture model; parametric statistics; probability density estimation; solar irradiance models; SYSTEM;
D O I
10.1109/EPEC48502.2020.9320011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The increasing penetration of photovoltaic generation resources make it imperative for power network designers to assess the available resources by obtaining accurate estimates of solar irradiance at a given site/geographical area. The parametric Beta distribution has long been a popular choice in such studies; however, the use of parametric functions for probability density estimation (such as the Beta distribution) can be problematic and may lead to model mis-specification. The Gaussian Mixture Model (GMM) is proposed in this paper to provide a more robust estimation of solar irradiance probability density at a certain site. Multi-year solar data from eight locations in the United States is utilized to evaluate the accuracy of the GMM estimate and compare its performance with the popular Beta distribution. Assessments are carried out using three standard measures of error, coefficient of determination, and the Kolmogorov-Smirnov goodness-of-fit test for distributional adequacy. Results demonstrate that the GMM estimate produces a more robust estimation with better performance metrics when compared with the Beta distribution.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Gaussian Mixture Model for the Estimation of Multiyear Solar Irradiance Probability Density
    Wahbah, Maisam
    EL-Fouly, Tarek H. M.
    Zahawi, Bashar
    Feng, Samuel F.
    [J]. IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2021, 44 (04): : 423 - 430
  • [2] Estimating probability distributions of solar irradiance
    A. Voskrebenzev
    S. Riechelmann
    A. Bais
    H. Slaper
    G. Seckmeyer
    [J]. Theoretical and Applied Climatology, 2015, 119 : 465 - 479
  • [3] Estimating probability distributions of solar irradiance
    Voskrebenzev, A.
    Riechelmann, S.
    Bais, A.
    Slaper, H.
    Seckmeyer, G.
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2015, 119 (3-4) : 465 - 479
  • [4] The Gaussian mixture probability hypothesis density filter
    Vo, Ba-Ngu
    Ma, Wing-Kin
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4091 - 4104
  • [5] Hybrid Beta-KDE Model for Solar Irradiance Probability Density Estimation
    Wahbah, Maisam
    El-Fouly, Tarek H. M.
    Zahawi, Bashar
    Feng, Samuel
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020, 11 (02) : 1110 - 1113
  • [6] Speech separation based on Gaussian mixture model probability density function estimation
    Yu, Xiao
    Hu, Guangrui
    [J]. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2000, 34 (02): : 177 - 180
  • [7] Ensemble Gaussian mixture models for probability density estimation
    Glodek, Michael
    Schels, Martin
    Schwenker, Friedhelm
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (01) : 127 - 138
  • [8] Ensemble Gaussian mixture models for probability density estimation
    Michael Glodek
    Martin Schels
    Friedhelm Schwenker
    [J]. Computational Statistics, 2013, 28 : 127 - 138
  • [9] Improved Gaussian mixture probability hypothesis density smoother
    He, Xiangyu
    Liu, Guixi
    [J]. SIGNAL PROCESSING, 2016, 120 : 56 - 63
  • [10] Probability density function of ocean noise based on a variational Bayesian Gaussian mixture model
    Zhang, Ying
    Yang, Kunde
    Yang, Qiulong
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 147 (04): : 2087 - 2097