On the Linear Stability of Vortex Columns in the Energy Space

被引:6
|
作者
Gallay, Thierry [1 ]
Smets, Didier [2 ]
机构
[1] Univ Grenoble Alpes, Inst Fourier, CNRS, 100 Rue Maths, F-38610 Gieres, France
[2] Sorbonne Univ, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75005 Paris, France
关键词
D O I
10.1007/s00021-019-0453-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the linear stability of inviscid columnar vortices with respect to finite energy perturbations. For a large class of vortex profiles, we show that the linearized evolution group has a sub-exponential growth in time, which means that the associated growth bound is equal to zero. This implies in particular that the spectrum of the linearized operator is entirely contained in the imaginary axis. This contribution complements the results of our previous work Gallay and Smets (Spectral stability of inviscid columnar vortices, 2018. where spectral stability was established for the linearized operator in the enstrophy space.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] On the Linear Stability of Vortex Columns in the Energy Space
    Thierry Gallay
    Didier Smets
    Journal of Mathematical Fluid Mechanics, 2019, 21
  • [2] Stability of discrete vortex solitons in linear scaled-space square lattices
    Mao, Shengyi
    Qin, Yali
    Li, Yilei
    Ren, Hongliang
    Xue, Linlin
    OPTICS COMMUNICATIONS, 2018, 426 : 219 - 225
  • [3] The linear stability of swirling vortex rings
    Gargan-Shingles, C.
    Rudman, M.
    Ryan, K.
    PHYSICS OF FLUIDS, 2016, 28 (11)
  • [4] A note on the linear stability of burgers vortex
    Crowdy, DG
    STUDIES IN APPLIED MATHEMATICS, 1998, 100 (02) : 107 - 126
  • [5] A note on the linear stability of Burgers vortex
    Applied Mathematics, 217-50, California Institute of Technology, Pasadena, CA 91125, United States
    Stud. Appl. Math., 2 (107-126):
  • [6] LINEAR-STABILITY ANALYSIS OF BEAM COLUMNS
    RAJASEKA.S
    JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1974, 100 (NST11): : 2345 - 2346
  • [7] ENERGY STABILITY OF TAYLOR VORTEX ARRAY
    LIN, SP
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (05): : 1272 - 1272
  • [8] Linear stability of inviscid vortex rings to axisymmetric perturbations
    Protas, Bartosz
    JOURNAL OF FLUID MECHANICS, 2019, 874 : 1115 - 1146
  • [9] Linear stability of Hill's vortex to axisymmetric perturbations
    Protas, Bartosz
    Elcrat, Alan
    JOURNAL OF FLUID MECHANICS, 2016, 799 : 579 - 602
  • [10] Nonparallel linear stability analysis of Long's vortex
    Fernandez-Feria, R
    PHYSICS OF FLUIDS, 1999, 11 (05) : 1114 - 1126