Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis

被引:76
|
作者
Lee, Seul Bee [1 ]
Lee, Jechan [2 ,3 ]
Tsang, Yiu Fai [4 ]
Kim, Young-Min [5 ]
Jae, Jungho [6 ]
Jung, Sang-Chul [7 ]
Park, Young-Kwon [1 ]
机构
[1] Univ Seoul, Sch Environm Engn, Seoul 02504, South Korea
[2] Ajou Univ, Dept Environm & Safety Engn, Suwon 16499, South Korea
[3] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea
[4] Educ Univ Hong Kong, Dept Sci & Environm Studies, Tai Po, Hong Kong, Peoples R China
[5] Daegu Univ, Dept Environm Engn, Gyongsan 38453, South Korea
[6] Pusan Natl Univ, Sch Chem Engn, Busan 46241, South Korea
[7] Sunchon Natl Univ, Dept Environm Engn, Sunchon 57922, South Korea
基金
新加坡国家研究基金会;
关键词
Plastic; COVID-19; Thermochemical process; Waste treatment; Aromatization;
D O I
10.1016/j.envpol.2021.117060
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, wasted mask is chosen as a pyrolysis feedstock whose generation has incredibly increased these days due to COVID-19. We suggest a way to produce value-added chemicals (e.g., aromatic compounds) from the mask with high amounts through catalytic fast pyrolysis (CFP). To this end, the effects of zeolite catalyst properties on the upgradation efficiency of pyrolytic products produced from pyrolysis of wasted mask were investigated. The compositions and yields of pyrolytic gases and oils were characterized as functions of pyrolysis temperature and the type of zeolite catalyst (HBeta, HY, and HZSM-5), including the mesoporous catalyst of Al-MCM-41. The mask was pyrolyzed in a fixed bed reactor, and the pyrolysis gases evolved in the reactor was routed to a secondary reactor inside which the zeolite catalyst was loaded. It was chosen 550 degrees C as the CFP temperature to compare the catalyst performance for the production of benzene, toluene, ethylbenzene, and xylene (BTEX) because this temperature gave the highest oil yield (80.7 wt%) during the non-catalytic pyrolysis process. The large pore zeolite group of HBeta and HY led to 134% and 67% higher BTEX concentrations than HZSM-5, respectively, likely because they had larger pores, higher surface areas, and higher acid site density than the HZSM-5. This is the first report of the effect of zeolite characteristics on BTEX production via CFP. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass
    Dai, Leilei
    Wang, Yunpu
    Liu, Yuhuan
    He, Chao
    Ruan, Roger
    Yu, Zhenting
    Jiang, Lin
    Zeng, Zihong
    Wu, Qiuhao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 749
  • [2] Recovery of Kraft lignin from industrial black liquor for a sustainable production of value-added light aromatics by the tandem catalytic pyrolysis
    Huang, Ming
    Zhu, Liang
    Li, Jie
    Ma, Zhongqing
    JOURNAL OF CLEANER PRODUCTION, 2024, 446
  • [3] Production of high value-added chemicals by catalytic fast pyrolysis of biomass
    Yao, Qian
    Xu, Lu-Jiang
    Zhang, Ying
    Chemistry and Industry of Forest Products, 2015, 35 (04) : 138 - 144
  • [4] Value-added fuels from the catalytic pyrolysis of Alternanthera philoxeroides
    Bhattacharjee, Neelanjan
    Biswas, Asit Baran
    FUEL, 2021, 295
  • [5] Emerging trends in the selective production of value-added aromatics
    Wu, Yuchao
    Dai, Houliang
    Yang, Weisheng
    Li, Yaxing
    Liu, Lichen
    SCIENCE CHINA-CHEMISTRY, 2025, 68 (01) : 15 - 20
  • [6] Emerging trends in the selective production of value-added aromatics
    Yuchao Wu
    Houliang Dai
    Weisheng Yang
    Yaxing Li
    Lichen Liu
    Science China(Chemistry), 2025, 68 (01) : 15 - 20
  • [7] Self-assembly kieselguhr-based ZSM-5 for catalytic pyrolysis of mask waste to produce high value-added aromatics
    Gu, Yufei
    Ge, Hucheng
    Liu, Yuke
    Wei, Qi
    Gao, Tianhua
    Gu, Hengshuo
    Fu, Hongbing
    Li, Fuwei
    Lin, Hongfei
    Miao, Lei
    Li, Zhixia
    FUEL, 2024, 358
  • [8] Catalytic fast pyrolysis of waste mixed cloth for the production of value-added chemicals
    Zhang, Jun
    Gu, Jing
    Yuan, Haoran
    Chen, Yong
    WASTE MANAGEMENT, 2021, 127 : 141 - 146
  • [9] Recovery of value-added products from the catalytic pyrolysis of waste tyre
    Shah, J.
    Jan, M. R.
    Mabood, F.
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (04) : 991 - 994
  • [10] Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: A review
    Pourebrahimi, Sina
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 851