JORDAN DECOMPOSITIONS OF COCENTERS OF REDUCTIVE p-ADIC GROUPS

被引:0
|
作者
He, Xuhua [1 ,2 ,3 ]
Kim, Ju-Lee [4 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
REPRESENTATION THEORY | 2019年 / 23卷
关键词
K-TYPES; ORBITAL INTEGRALS; NILPOTENT ORBITS; PROOF;
D O I
10.1090/ert/528
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cocenters of Hecke algebras H play an important role in studying mod l or C harmonic analysis on connected p-adic reductive groups. On the other hand, the depth r Hecke algebra Hr+ is well suited to study depth r smooth representations. In this paper, we study depth r rigid cocenters (H) over bar (rig)(r+) of a connected reductive p-adic group over rings of characteristic zero or l not equal p. More precisely, under some mild hypotheses, we establish a Jordan decomposition of the depth r rigid cocenter, hence find an explicit basis of (H) over bar (rig)(r+).
引用
收藏
页码:294 / 324
页数:31
相关论文
共 50 条