Objective: To investigate the sineoculis homeobox homolog 1 (SIX1) affect the epithelial mesenchymal transition (EMT) in papillary thyroid carcinoma (PTC) through regulating TGF-beta/Smad2/3 signaling pathway. Methods: The SIX1 expression in cytological specimens, tissues or PTC cell lines was detected by qRT-PCR, western blotting or immunohistochemistry. A series of vitro experiments including flow cytometry, CCK-8, wound-healing and Transwell were used to evaluate the biological characteristics in a PTC cell line (NPA cells), which were divided into Blank, Negative control (NC), SIX1, SIX1-siRNA, LY-364947 (TGF-beta/Smad2/3 pathway inhibitor) and SIX1 + LY364947 groups. TGF-beta/Smad2/3 pathway and EMT related protein expression were measured by qRT-PCR and western blotting. Results: SIX1 mRNA expression was increased in cytological specimens from PTC patients as compared with the non-toxic nodular goitre (NTG) patients. Moreover, compared with adjacent normal tissues, expressions of SIX1, N-cadherin and Vimentin were higher while E-cadherin was lower in PTC tissues; and SIX1 was positively correlated with N-cadherin and Vimentin but was negatively correlated with E-cadherin. Furthermore, the SIX1 expression was associated with histopathology, extrathyroidal extension (ETE), lymph node metastasis (LNM), pT stage, TNM stage, and distant metastasis. In addition, the expressions of TGF-beta 1, p-SMAD2/3, N-cadherin and Vimentin were downregulated in NPA cells after LY-364947 treatment with upregulated Ecadherin, decreased cell proliferation and metastasis, and enhanced cell apoptosis, which was reversed by SIX1 overexpression. Conclusion: Silencing SIX1 can inhibit TGF-beta/Smad2/3 pathway, thereby suppressing EMT in PTC, which may be a novel avenue for the treatment of PTC. (C) 2020 Oto-Rhino-Laryngological Society of Japan Inc. Published by Elsevier B.V. All rights reserved.