A Review on Speech Emotion Recognition Using Deep Learning and Attention Mechanism

被引:92
|
作者
Lieskovska, Eva [1 ]
Jakubec, Maros [1 ]
Jarina, Roman [1 ]
Chmulik, Michal [1 ]
机构
[1] Univ Zilina, Fac Elect Engn & Informat Technol, Univ 8215-1, Zilina 01026, Slovakia
关键词
speech emotion recognition; deep learning; attention mechanism; recurrent neural network; long short-term memory; DATA AUGMENTATION; NEURAL-NETWORKS; FEATURES; AUDIO; CLASSIFIERS; PARAMETERS; DOMINANCE; DATABASES; AROUSAL; MODEL;
D O I
10.3390/electronics10101163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emotions are an integral part of human interactions and are significant factors in determining user satisfaction or customer opinion. speech emotion recognition (SER) modules also play an important role in the development of human-computer interaction (HCI) applications. A tremendous number of SER systems have been developed over the last decades. Attention-based deep neural networks (DNNs) have been shown as suitable tools for mining information that is unevenly time distributed in multimedia content. The attention mechanism has been recently incorporated in DNN architectures to emphasise also emotional salient information. This paper provides a review of the recent development in SER and also examines the impact of various attention mechanisms on SER performance. Overall comparison of the system accuracies is performed on a widely used IEMOCAP benchmark database.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Speech Emotion Recognition Using Deep Learning Techniques: A Review
    Khalil, Ruhul Amin
    Jones, Edward
    Babar, Mohammad Inayatullah
    Jan, Tariqullah
    Zafar, Mohammad Haseeb
    Alhussain, Thamer
    IEEE ACCESS, 2019, 7 : 117327 - 117345
  • [2] Speech Emotion Recognition Using Deep Learning
    Alagusundari, N.
    Anuradha, R.
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 313 - 325
  • [3] Speech Emotion Recognition Using Deep Learning
    Ahmed, Waqar
    Riaz, Sana
    Iftikhar, Khunsa
    Konur, Savas
    ARTIFICIAL INTELLIGENCE XL, AI 2023, 2023, 14381 : 191 - 197
  • [4] Deep Learning Techniques for Speech Emotion Recognition : A Review
    Pandey, Sandeep Kumar
    Shekhawat, H. S.
    Prasanna, S. R. M.
    2019 29TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2019, : 197 - 202
  • [5] Speech Emotion Recognition with Deep Learning
    Harar, Pavol
    Burget, Radim
    Dutta, Malay Kishore
    2017 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2017, : 137 - 140
  • [6] Speech Emotion Recognition Using Convolutional Neural Networks with Attention Mechanism
    Mountzouris, Konstantinos
    Perikos, Isidoros
    Hatzilygeroudis, Ioannis
    Corchado, Juan M.
    Iglesias, Carlos A.
    Kim, Byung-Gyu
    Mehmood, Rashid
    Ren, Fuji
    Lee, In
    ELECTRONICS, 2023, 12 (20)
  • [7] SPEECH EMOTION RECOGNITION USING MULTI-HOP ATTENTION MECHANISM
    Yoon, Seunghyun
    Byun, Seokhyun
    Dey, Subhadeep
    Jung, Kyomin
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2822 - 2826
  • [8] Emotion recognition from speech using deep learning on spectrograms
    Li, Xingguang
    Song, Wenjun
    Liang, Zonglin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 2791 - 2796
  • [9] Speech Emotion Recognition Using Deep Learning on audio recordings
    Suganya, S.
    Charles, E. Y. A.
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER - 2019), 2019,
  • [10] Emotion Recognition from Children Speech Signals Using Attention Based Time Series Deep Learning
    Cao, Guitao
    Tang, Yunming
    Sheng, Jiyu
    Cao, Wenming
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1296 - 1300