Superpixel Based Dimension Reduction for Hyperspectral Imagery

被引:0
|
作者
Xu, Huilin [1 ]
Zhang, Hongyan [1 ]
He, Wei [2 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, LISMARS, Wuhan 430079, Hubei, Peoples R China
[2] RIKEN AIP, Geoinformat Unit, Tokyo, Japan
基金
中国国家自然科学基金;
关键词
Hyperspectral image; dimension reduction; superpixel; spectral-spatial; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on dimension reduction (DR) technique for hyperspectral image (HSI). In this paper, we proposed a superpixel-based linear discriminant analysis (SP-LDA) dimension reduction method for HSI classification. Pixels within a local spatial neighborhood are expected to have similar spectral curves and share the same class label. To fully exploit the spatial structure, superpixel segmentation is firstly introduced to generate the superpixel map, which can adaptively explore the neighborhood structure information. Moreover, we extend the SP-LDA algorithm by combining the extracted feature from spectral and spatial dimensions, which can fully exploit complementary and consistent information from both dimensions. The experimental results on two standard hyperspectral datasets confirm the superiority of the proposed algorithms.
引用
收藏
页码:2575 / 2578
页数:4
相关论文
共 50 条
  • [1] Superpixel-based spatial-spectral dimension reduction for hyperspectral imagery classification
    Xu, Huilin
    Zhang, Hongyan
    He, Wei
    Zhang, Liangpei
    [J]. NEUROCOMPUTING, 2019, 360 : 138 - 150
  • [2] Superpixel Estimation for Hyperspectral Imagery
    Massoudifar, Pegah
    Rangarajan, Anand
    Gader, Paul
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 287 - 292
  • [3] A Margin Technique for Dimension Reduction with Applications to Hyperspectral Imagery
    Peng, Jing
    Zhang, Kun
    [J]. PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013), 2013, 41 : 547 - 551
  • [4] USING BAND SUBSET SELECTION FOR DIMENSIONALITY REDUCTION IN SUPERPIXEL SEGMENTATION OF HYPERSPECTRAL IMAGERY
    Alkhatib, Mohammed Q.
    Velez-Reyes, Miguel
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 26 - 30
  • [5] Wavelet spectral dimension reduction of hyperspectral imagery on a reconfigurable computer
    El-Araby, E
    El-Ghazawi, T
    Le Moigne, J
    Gaj, K
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY, PROCEEDINGS, 2004, : 399 - 402
  • [6] Efficient hierarchical-PCA dimension reduction for hyperspectral imagery
    Agarwal, Abhishek
    El-Ghazawi, Tarek
    El-Askary, Hesham
    Le-Moigne, Jacquline
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1-3, 2007, : 1077 - +
  • [7] Dimension reduction methods applied to coastline extraction on hyperspectral imagery
    Arslan, Ozan
    Akyurek, Ozer
    Kaya, Sinasi
    Seker, Dursun Z.
    [J]. GEOCARTO INTERNATIONAL, 2020, 35 (04) : 376 - 390
  • [8] REGIONAL VS. GLOBAL SUPERPIXEL-BASED UNMIXING OF HYPERSPECTRAL IMAGERY
    Alkhatib, Mohammed Q.
    Velez-Reyes, Miguel
    [J]. 2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [9] SUPERPIXEL-LEVEL SPARSE REPRESENTATION-BASED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Jia, Sen
    Deng, Bin
    Jia, Xiuping
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3302 - 3305
  • [10] Superpixel sparse representation for target detection in hyperspectral imagery
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Qiu, Hao
    Zeng, Xiangyan
    [J]. COMPRESSIVE SENSING VI: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2017, 10211