Engineering Quantum States of Matter for Atomic Clocks in Shallow Optical Lattices

被引:37
|
作者
Hutson, Ross B. [1 ,2 ,3 ]
Goban, Akihisa [1 ,2 ,3 ]
Marti, G. Edward [1 ,2 ,3 ,4 ]
Sonderhouse, Lindsay [1 ,2 ,3 ]
Sanner, Christian [1 ,2 ,3 ]
Ye, Jun [1 ,2 ,3 ]
机构
[1] NIST, JILA, 440 UCB, Boulder, CO 80309 USA
[2] Univ Colorado, 440 UCB, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA
[4] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
基金
日本学术振兴会;
关键词
INTERACTING FERMIONS; UNCERTAINTY;
D O I
10.1103/PhysRevLett.123.123401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effects of stimulated scattering of optical lattice photons on atomic coherence times in a state-of-the art Sr-87 optical lattice clock. Such scattering processes are found to limit the achievable coherence times to less than 12 s (corresponding to a quality factor of 1 x 10(16)), significantly shorter than the predicted 145(40) s lifetime of Sr-87's excited clock state. We suggest that shallow, state-independent optical lattices with increased lattice constants can give rise to sufficiently small lattice photon scattering and motional dephasing rates as to enable coherence times on the order of the clock transition's natural lifetime. Not only should this scheme be compatible with the relatively high atomic density associated with Fermi-degenerate gases in three-dimensional optical lattices, but we anticipate that certain properties of various quantum states of matter-such as the localization of atoms in a Mott insulator-can be used to suppress dephasing due to tunneling.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum engineering of atomic phase shifts in optical clocks
    Zanon-Willette, T.
    Almonacil, S.
    de Clercq, E.
    Ludlow, A. D.
    Arimondo, E.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [2] Quantum engineering for optical clocks
    Christian Lisdat
    Carsten Klempt
    Nature, 2020, 588 : 397 - 398
  • [3] Quantum engineering for optical clocks
    Lisdat, Christian
    Klempt, Carsten
    NATURE, 2020, 588 (7838) : 397 - 398
  • [4] Parallel quantum control meets optical atomic clocks
    Simone Colombo
    Nature Physics, 2024, 20 : 177 - 178
  • [5] An elementary quantum network of entangled optical atomic clocks
    B. C. Nichol
    R. Srinivas
    D. P. Nadlinger
    P. Drmota
    D. Main
    G. Araneda
    C. J. Ballance
    D. M. Lucas
    Nature, 2022, 609 : 689 - 694
  • [6] Parallel quantum control meets optical atomic clocks
    Colombo, Simone
    NATURE PHYSICS, 2024, 20 (02) : 177 - 178
  • [7] An elementary quantum network of entangled optical atomic clocks
    Nichol, B. C.
    Srinivas, R.
    Nadlinger, D. P.
    Drmota, P.
    Main, D.
    Araneda, G.
    Ballance, C. J.
    Lucas, D. M.
    NATURE, 2022, 609 (7928) : 689 - +
  • [8] Experimental constraint on dark matter detection with optical atomic clocks
    Wcislo, P.
    Morzynski, P.
    Bober, M.
    Cygan, A.
    Lisak, D.
    Ciurylo, R.
    Zawada, M.
    NATURE ASTRONOMY, 2017, 1 (01):
  • [9] Experimental constraint on dark matter detection with optical atomic clocks
    P. Wcisło
    P. Morzyński
    M. Bober
    A. Cygan
    D. Lisak
    R. Ciuryło
    M. Zawada
    Nature Astronomy, 1
  • [10] Strongly correlated quantum matter in optical lattices
    Bloch, I.
    Foelling, S.
    Widera, A.
    Mueller, T.
    Rom, T.
    Best, Th.
    van Oosten, D.
    Schneider, U.
    Paredes, B.
    Gerbier, F.
    ATOMIC PHYSICS 20, 2006, 869 : 191 - +