Predicting Growth Conditions from Internal Metabolic Fluxes in an In-Silico Model of E. coli

被引:20
|
作者
Sridhara, Viswanadham [1 ]
Meyer, Austin G. [1 ,2 ]
Rai, Piyush [3 ]
Barrick, Jeffrey E. [1 ,2 ,4 ,5 ]
Ravikumar, Pradeep [3 ]
Segre, Daniel [6 ,7 ]
Wilke, Claus O. [1 ,2 ,4 ,8 ]
机构
[1] Univ Texas Austin, Ctr Computat Biol & Bioinformat, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[4] Univ Texas Austin, Ctr Syst & Synthet Biol, Austin, TX 78712 USA
[5] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA
[6] Boston Univ, Dept Biol, Boston, MA 02215 USA
[7] Boston Univ, Bioinformat Program, Boston, MA 02215 USA
[8] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
来源
PLOS ONE | 2014年 / 9卷 / 12期
关键词
ESCHERICHIA-COLI; GENE-EXPRESSION; ASSOCIATION; ADAPTATION; SELECTION; NUTRIENT; MUTANTS; MG1655;
D O I
10.1371/journal.pone.0114608
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A widely studied problem in systems biology is to predict bacterial phenotype from growth conditions, using mechanistic models such as flux balance analysis (FBA). However, the inverse prediction of growth conditions from phenotype is rarely considered. Here we develop a computational framework to carry out this inverse prediction on a computational model of bacterial metabolism. We use FBA to calculate bacterial phenotypes from growth conditions in E. coli, and then we assess how accurately we can predict the original growth conditions from the phenotypes. Prediction is carried out via regularized multinomial regression. Our analysis provides several important physiological and statistical insights. First, we show that by analyzing metabolic end products we can consistently predict growth conditions. Second, prediction is reliable even in the presence of small amounts of impurities. Third, flux through a relatively small number of reactions per growth source (similar to 10) is sufficient for accurate prediction. Fourth, combining the predictions from two separate models, one trained only on carbon sources and one only on nitrogen sources, performs better than models trained to perform joint prediction. Finally, that separate predictions perform better than a more sophisticated joint prediction scheme suggests that carbon and nitrogen utilization pathways, despite jointly affecting cellular growth, may be fairly decoupled in terms of their dependence on specific assortments of molecular precursors.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Impact of growth conditions on transport behavior of E. coli
    Marcus, Ian M.
    Bolster, Carl H.
    Cook, Kimberly L.
    Opot, Stephen R.
    Walker, Sharon L.
    [J]. JOURNAL OF ENVIRONMENTAL MONITORING, 2012, 14 (03): : 984 - 991
  • [2] Dynamic Energy Budget model for E. coli growth in carbon and nitrogen limitation conditions
    Matyja, Konrad
    Lech, Magdalena
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2024, 108 (01)
  • [3] The E. coli molecular phenotype under different growth conditions
    Mehmet U. Caglar
    John R. Houser
    Craig S. Barnhart
    Daniel R. Boutz
    Sean M. Carroll
    Aurko Dasgupta
    Walter F. Lenoir
    Bartram L. Smith
    Viswanadham Sridhara
    Dariya K. Sydykova
    Drew Vander Wood
    Christopher J. Marx
    Edward M. Marcotte
    Jeffrey E. Barrick
    Claus O. Wilke
    [J]. Scientific Reports, 7
  • [4] In vivo estimation of energetic parameters of a metabolic network model for substrate limited growth of E. coli
    Taymaz-Nikerel, H.
    Verheijen, P. J. T.
    Borujeni, A. E.
    Heijnen, J. J.
    van Gulik, W. M.
    [J]. NEW BIOTECHNOLOGY, 2009, 25 : S337 - S338
  • [5] Metabolic engineering of E. coli for producing phloroglucinol from acetate
    Shengzhu Yu
    Liwei Guo
    Luyao Zhao
    Zhenya Chen
    Yixin Huo
    [J]. Applied Microbiology and Biotechnology, 2020, 104 : 7787 - 7799
  • [6] Metabolic engineering of E. coli for producing phloroglucinol from acetate
    Yu, Shengzhu
    Guo, Liwei
    Zhao, Luyao
    Chen, Zhenya
    Huo, Yixin
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (18) : 7787 - 7799
  • [7] Simultaneous Parameters Identifiability and Estimation of an E. coli Metabolic Network Model
    Freitas Alberton, Kese Pontes
    Alberton, Andre Luis
    Andrea Di Maggio, Jimena
    Gisela Estrada, Vanina
    Soledad Diaz, Maria
    Secchi, Argimiro Resende
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [8] Compartmental Volume Regulation of E. Coli under Various Growth Conditions
    van den Berg, Jonas
    Poolman, Bert
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (03) : 35A - 35A
  • [9] A simple interaction-based E. coli growth model
    Krce, Lucija
    Sprung, Matilda
    Maravic, Ana
    Aviani, Ivica
    [J]. PHYSICAL BIOLOGY, 2019, 16 (06)
  • [10] RND pump inhibition: in-silico and in-vitro study by Eugenol on clinical strain of E. coli and P. aeruginosa
    Elham Etesami Ashtiani
    Zohreh Gholizadeh Siahmazgi
    Mirsasan Mirpour
    Bahram Mohammad Soltani
    [J]. In Silico Pharmacology, 11 (1)