Multi-Fidelity High-Order Gaussian Processes for Physical Simulation

被引:0
|
作者
Wang, Zheng [1 ]
Xing, Wei [1 ]
Kirby, Robert M. [1 ]
Zhe, Shandian [1 ]
机构
[1] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
关键词
MODEL; INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key task of physical simulation is to solve partial differential equations (PDEs) on discretized domains, which is known to be costly. In particular, high-fidelity solutions are much more expensive than low-fidelity ones. To reduce the cost, we consider novel Gaussian process (GP) models that leverage simulation examples of different fidelities to predict high-dimensional PDE solution outputs. Existing GP methods are either not scalable to high-dimensional outputs or lack effective strategies to integrate multi-fidelity examples. To address these issues, we propose Multi-Fidelity High-Order Gaussian Process (MFHoGP) that can capture complex correlations both between the outputs and between the fidelities to enhance solution estimation, and scale to large numbers of outputs. Based on a novel nonlinear coregionalization model, MFHoGP propagates bases throughout fidelities to fuse information, and places a deep matrix GP prior over the basis weights to capture the (nonlinear) relationships across the fidelities. To improve inference efficiency and quality, we use bases decomposition to largely reduce the model parameters, and layer-wise matrix Gaussian posteriors to capture the posterior dependency and to simplify the computation. Our stochastic variational learning algorithm successfully handles millions of outputs without extra sparse approximations. We show the advantages of our method in several typical applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A General Framework for Multi-fidelity Bayesian Optimization with Gaussian Processes
    Song, Jialin
    Chen, Yuxin
    Yue, Yisong
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [2] Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
    Lu, Chi-Ken
    Shafto, Patrick
    ENTROPY, 2021, 23 (11)
  • [3] Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian Processes
    Tsilifis, Panagiotis
    Pandita, Piyush
    Ghosh, Sayan
    Andreoli, Valeria
    Vandeputte, Thomas
    Wang, Liping
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [4] A STRATEGY FOR ADAPTIVE SAMPLING OF MULTI-FIDELITY GAUSSIAN PROCESSES TO REDUCE PREDICTIVE UNCERTAINTY
    Ghosh, Sayan
    Kristensen, Jesper
    Zhang, Yiming
    Subber, Waad
    Wang, Liping
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2B, 2020,
  • [5] Safe Real-Time Optimization using Multi-Fidelity Gaussian Processes
    Petsagkourakis, Panagiotis
    Chachuat, Benoit
    del Rio-Chanona, Ehecatl Antonio
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6734 - 6741
  • [6] Multi-fidelity Gaussian Process Bandit Optimisation
    Kandasamy, Kirthevasan
    Dasarathy, Gautam
    Oliva, Junier
    Schneider, Jeff
    Poczos, Barnabas
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 66 : 151 - 196
  • [7] Multi-fidelity Hierarchical Neural Processes
    Wu, Dongxia
    Chinazzi, Matteo
    Vespignani, Alessandro
    Ma, Yi-An
    Yu, Rose
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2029 - 2038
  • [8] Expedited Multi-Target Search with Guaranteed Performance via Multi-fidelity Gaussian Processes
    Wei, Lai
    Tan, Xiaobo
    Srivastava, Vaibhav
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 7095 - 7100
  • [9] EFFICIENT MULTI-FIDELITY SIMULATION OPTIMIZATION
    Xu, Jie
    Zhang, Si
    Huang, Edward
    Chen, Chun-Hung
    Lee, Loo Hay
    Celik, Nurcin
    PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 3940 - 3951
  • [10] Multi-fidelity modeling with different input domain definitions using deep Gaussian processes
    Hebbal, Ali
    Brevault, Loic
    Balesdent, Mathieu
    Talbi, El-Ghazali
    Melab, Nouredine
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 63 (05) : 2267 - 2288