Accelerated, scalable and reproducible AI-driven gravitational wave detection

被引:39
|
作者
Huerta, E. A. [1 ,2 ]
Khan, Asad [3 ]
Huang, Xiaobo [3 ]
Tian, Minyang [3 ]
Levental, Maksim [2 ]
Chard, Ryan [1 ]
Wei, Wei [3 ]
Heflin, Maeve [3 ]
Katz, Daniel S. [3 ]
Kindratenko, Volodymyr [3 ]
Mu, Dawei [3 ]
Blaiszik, Ben [1 ,2 ]
Foster, Ian [1 ,2 ]
机构
[1] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL USA
[2] Univ Chicago, Chicago, IL 60637 USA
[3] Univ Illinois, Urbana, IL USA
关键词
MODELS;
D O I
10.1038/s41550-021-01405-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The development of reusable artificial intelligence (AI) models for wider use and rigorous validation by the community promises to unlock new opportunities in multi-messenger astrophysics. Here we develop a workflow that connects the Data and Learning Hub for Science, a repository for publishing AI models, with the Hardware-Accelerated Learning (HAL) cluster, using funcX as a universal distributed computing service. Using this workflow, an ensemble of four openly available AI models can be run on HAL to process an entire month's worth (August 2017) of advanced Laser Interferometer Gravitational-Wave Observatory data in just seven minutes, identifying all four binary black hole mergers previously identified in this dataset and reporting no misclassifications. This approach combines advances in AI, distributed computing and scientific data infrastructure to open new pathways to conduct reproducible, accelerated, data-driven discovery. By combining a repository for artificial intelligence models and a supercomputing cluster, an entire month's worth of advanced LIGO data is analysed in just 7 min, finding all binary black hole mergers previously identified in this dataset and reporting no misclassifications.
引用
收藏
页码:1062 / 1068
页数:7
相关论文
共 50 条
  • [1] Accelerated, scalable and reproducible AI-driven gravitational wave detection
    E. A. Huerta
    Asad Khan
    Xiaobo Huang
    Minyang Tian
    Maksim Levental
    Ryan Chard
    Wei Wei
    Maeve Heflin
    Daniel S. Katz
    Volodymyr Kindratenko
    Dawei Mu
    Ben Blaiszik
    Ian Foster
    Nature Astronomy, 2021, 5 : 1062 - 1068
  • [2] AI-Driven Framework for Scalable Management of Network Slices
    Blanco, Luis
    Kuklinski, Slawomir
    Zeydan, Engin
    Rezazadeh, Farhad
    Chawla, Ashima
    Zanzi, Lanfranco
    Devoti, Francesco
    Kolakowski, Robert
    Vlahodimitropoulou, Vasiliki
    Chochliouros, Ioannis
    Bosneag, Anne-Marie
    Cherrared, Sihem
    Garrido, Luis A.
    Barrachina-Munoz, Sergio
    Mangues, Josep
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (11) : 216 - 222
  • [3] AI-DRIVEN DESIGN
    Noor, Ahmed K.
    MECHANICAL ENGINEERING, 2017, 139 (10) : 38 - 43
  • [4] Advancing cybersecurity: a comprehensive review of AI-driven detection techniques
    Salem, Aya H.
    Azzam, Safaa M.
    Emam, O. E.
    Abohany, Amr A.
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [5] Maximizing Accuracy in AI-Driven Pattern Detection in Cardiac Care
    Chauhan, Ritu
    Singh, Dhananjay
    INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2023, PT I, 2024, 14531 : 176 - 187
  • [6] AI-Driven Smart Production
    Kaneko H.
    Goto J.
    Kawai Y.
    Mochizuki T.
    Sato S.
    Imai A.
    Yamanouchi Y.
    SMPTE Motion Imaging Journal, 2020, 129 (02): : 27 - 35
  • [7] AI-driven smile designing
    Kurian, N.
    Sudharson, N. A.
    Varghese, K. G.
    BRITISH DENTAL JOURNAL, 2024, 236 (03) : 146 - 146
  • [8] AI-driven smile designing
    N. Kurian
    N. A. Sudharson
    K. G. Varghese
    British Dental Journal, 2024, 236 : 146 - 146
  • [9] Empowering the AI-Driven Laboratory
    Meek, Trish
    Gioioso, Marisa
    LCGC NORTH AMERICA, 2023, 41 (11) : 470 - 471
  • [10] Alienation in the AI-Driven Workplace
    Vredenburgh, Kate
    AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2021, : 266 - 266