Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM

被引:12
|
作者
Pandey, Rishi Kumar [1 ]
Mishra, Hradyesh Kumar [1 ]
机构
[1] Jaypee Univ Engn & Technol, Dept Math, Guna 473226, MP, India
关键词
Caputo derivative; Fractional partial differential equation; Homotopy analysis fractional sumudu; transform method; HOMOTOPY ANALYSIS METHOD; SUMUDU TRANSFORM METHOD; MODELS;
D O I
10.1016/j.newast.2017.06.009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, the semi-analytic numerical technique for the solution of time-space fractional telegraph equation is applied. This numerical technique is based on coupling of the homotopy analysis method and sumudu transform. It shows the clear advantage with mess methods like finite difference method and also with polynomial methods similar to perturbation and Adomian decomposition methods. It is easily transform the complex fractional order derivatives in simple time domain and interpret the results in same meaning. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 93
页数:12
相关论文
共 50 条
  • [1] The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equations
    Zhang, Hongmei
    Shen, Shujun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (04) : 571 - 585
  • [2] Numerical Approximation of Space-Time Fractional Parabolic Equations
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 679 - 705
  • [3] Numerical solution of the nonlinear conformable space-time fractional partial differential equations
    Yaslan, H. Cerdik
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 407 - 419
  • [4] NUMERICAL SIMULATIONS FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS
    Ling, Leevan
    Yamamoto, Masahiro
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (02)
  • [5] Stochastic solution of space-time fractional diffusion equations
    Meerschaert, MM
    Benson, DA
    Scheffler, HP
    Baeumer, B
    PHYSICAL REVIEW E, 2002, 65 (04): : 4
  • [6] On the numerical solution of space-time fractional diffusion models
    Hanert, Emmanuel
    COMPUTERS & FLUIDS, 2011, 46 (01) : 33 - 39
  • [7] Numerical simulation for generalized space-time fractional Klein-Gordon equations via Gegenbauer wavelet
    Faheem, Mo
    Khan, Arshad
    Malik, Muslim
    Debbouche, Amar
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (07) : 2529 - 2551
  • [8] Approximate solution of space-time fractional differential equations via Legendre polynomials
    Krishnaveni, K.
    Kannan, K.
    Balachandar, S. Raja
    Venkatesh, S. G.
    SCIENCEASIA, 2016, 42 (05): : 356 - 361
  • [9] Modification of numerical algorithm for space-time fractional partial differential equations including two types of fractional derivatives
    Dehestani, Haniye
    Ordokhani, Yadollah
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (11) : 2308 - 2326
  • [10] Numerical solution of ?-Hilfer fractional Black-Scholes equations via space-time spectral collocation method
    Mohammadizadeh, F.
    Georgiev, S. G.
    Rozza, G.
    Tohidi, E.
    Shateyi, S.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 71 : 131 - 145