In this study, the biosorption of lead (Pb(II)), copper (Cu(II)), and cadmium (Cd(II)) ions from aqueous solution using waste of cabbage leaves powder (CLP) was investigated as a function of pH, shaking time, initial metal concentration, and biosorbent dose. The maximum removal efficiency at optimum condition in single biosorption system was 95.67, 92.42, and 88.92% for Pb(II), Cu(II), and Cd(II) ions, respectively. These values reduced in ternary systems in the same sequence. Langmuir and extended Langmuir isotherm models were found to be the best fit of the isotherm data for single and ternary biosorption systems, respectively. The kinetic data of the three metals were better fit by the pseudo-second-order model with higher coefficient of determination and more closely predicted uptake. In addition, the results showed that the intraparticle diffusion was the dominating mechanism. Thermodynamic study showed that the biosorption of Pb(II), Cu(II), and Cd(II) onto CLP was a chemical reaction which was exothermic in nature. Finally, SEM image shows that CLP has a number of heterogeneous small pores while the Fourier transform infrared (FTIR) spectroscopic analysis showed that the carboxyl, amine, and hydroxyl groups are the major groups that are responsible for the biosorption process.