Noise sensitivity of phase-synchronization time in stochastic resonance: Theory and experiment

被引:5
|
作者
Park, Kwangho [1 ]
Lai, Ying-Cheng
Krishnamoorthy, Satish
机构
[1] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USA
关键词
D O I
10.1103/PhysRevE.75.046205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent numerical and heuristic arguments have revealed that the average phase-synchronization time between the input and the output associated with stochastic resonance is highly sensitive to noise variation. In particular there is evidence that this average time exhibits a cusplike behavior as the noise strength varies through the optimal value. Here we present an explicit formula for the average phase-synchronization time in terms of the phase diffusion coefficient and the average frequency difference between the input and the output signals. We also provide experimental evidence for the cusplike behavior by using a bistable microelectronic-circuit system.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The relationship between stochastic resonance and the average phase-synchronization time
    Dong, Xiaojuan
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2009, 41 (05): : 775 - 782
  • [2] The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises
    董小娟
    Chinese Physics B, 2010, 19 (01) : 136 - 142
  • [3] The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises
    Dong Xiao-Juan
    CHINESE PHYSICS B, 2010, 19 (01)
  • [4] Frequency dependence of phase-synchronization time in nonlinear dynamical systems
    Park, Kwangho
    Lai, Ying-Cheng
    Krishnamoorthy, Satish
    CHAOS, 2007, 17 (04)
  • [5] Stochastic resonance and noise-induced synchronization
    Freund, JA
    Neiman, AB
    Schimansky-Geier, L
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 422 - 427
  • [6] Aperiodic stochastic resonance and phase synchronization
    Park, K
    Lai, YC
    Liu, ZH
    Nachman, A
    PHYSICS LETTERS A, 2004, 326 (5-6) : 391 - 396
  • [7] Statistical modelling of a phase-synchronization system under effect of non-Gaussian noise
    Fomin, A.F.
    Stafeev, A.V.
    Radiotekhnika, 1992, (09): : 8 - 12
  • [8] Excitable membranes:: Channel noise, synchronization, and stochastic resonance
    Hänggi, P
    Schmid, G
    Goychuk, I
    ADVANCES IN SOLID STATE PHYSICS 42, 2002, 42 : 359 - 370
  • [9] Effect of noise on generalized synchronization of chaos: theory and experiment
    O. I. Moskalenko
    A. E. Hramov
    A. A. Koronovskii
    A. A. Ovchinnikov
    The European Physical Journal B, 2011, 82 : 69 - 82
  • [10] Effect of noise on generalized synchronization of chaos: theory and experiment
    Moskalenko, O. I.
    Hramov, A. E.
    Koronovskii, A. A.
    Ovchinnikov, A. A.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 82 (01): : 69 - 82