Learning optimal spatially-dependent regularization parameters in total variation image denoising

被引:20
|
作者
Van Chung, Cao [1 ,3 ]
De los Reyes, J. C. [1 ]
Schonlieb, C. B. [2 ]
机构
[1] Escuela Politec Nacl, Res Ctr Math Modelling MODEMAT, Quito, Ecuador
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[3] Hanoi Univ Sci, Ctr High Performance Comp, Hanoi, Vietnam
基金
英国工程与自然科学研究理事会;
关键词
optimization-based learning in imaging; bilevel optimization; PDE-constrained optimization; semismooth Newton method; Schwarz domain decomposition method; OPTIMIZATION; SELECTION;
D O I
10.1088/1361-6420/33/7/074005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a bilevel optimization approach in function space for the choice of spatially dependent regularization parameters in TV image denoising models. First- and second-order optimality conditions for the bilevel problem are studied when the spatially-dependent parameter belongs to the Sobolev space H-1(Omega). A combined Schwarz domain decomposition-semismooth Newton method is proposed for the solution of the full optimality system and local superlinear convergence of the semismooth Newton method is verified. Exhaustive numerical computations are finally carried out to show the suitability of the approach.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Image Denoising based on Spatially Adaptive High Order Total Variation Model
    Deng, Lizhen
    Fang, Qi
    Zhu, Hu
    Zhou, Gang
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 212 - 216
  • [32] SPATIALLY ADAPTIVE TOTAL VARIATION IMAGE DENOISING UNDER SALT AND PEPPER NOISE
    Rojas, Renan
    Rodriguez, Paul
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 278 - 282
  • [33] Optimal Choice of Regularization Parameter in Image Denoising
    Lucchese, Mirko
    Frosio, Iuri
    Borghese, N. Alberto
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 534 - 543
  • [34] Fractional-order iterative regularization method for total variation based image denoising
    Zhang, Jun
    Wei, Zhihui
    Xiao, Liang
    JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (04)
  • [35] Image denoising based on mixed total variation regularization with decision-making scheme
    Zhou, Luoyu
    Zhang, Tao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (11-12) : 7543 - 7557
  • [36] Blind image restoration algorithm iteratively using wavelet denoising and total variation regularization
    Zhou, Zuo-Feng
    Shui, Peng-Lang
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2008, 30 (12): : 2912 - 2915
  • [37] Structural similarity-optimal total variation algorithm for image denoising
    Shao, Yu
    Sun, Fuchun
    Li, Hongbo
    Liu, Ying
    Shao, Y. (shaoyu2011@foxmail.com), 1600, Springer Verlag (215): : 833 - 843
  • [38] Adaptive total variation L1 regularization for salt and pepper image denoising
    Dang Ngoc Hoang Thanh
    Le Thi Thanh
    Nguyen Ngoc Hien
    Prasath, Surya
    OPTIK, 2020, 208
  • [39] IMAGE DENOISING VIA EXACT MINIMUM RANK APPROXIMATION WITH RELATIVE TOTAL VARIATION REGULARIZATION
    Luo, Xuegang
    Lv, Junrui
    Wang, Juan
    DYNA, 2019, 94 (06): : 684 - 690
  • [40] Four-directional fractional-order total variation regularization for image denoising
    Wu, Linna
    Chen, Yingpin
    Jin, Jiaquan
    Du, Hongwei
    Qiu, Bensheng
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (05)