On implementation of GHS attack against elliptic curve cryptosystems over cubic extension fields of odd characteristic

被引:0
|
作者
Hashizume, Naoki [1 ]
Momose, Fumiyuki [2 ]
Chao, Jinhui [3 ]
机构
[1] Chuo Univ, Course Informat & Syst Engn, Grad Sch Sci & Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan
[2] Chuo Univ, Fac Sci & Engn, Dept Math, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan
[3] Chuo Univ, Fac Sci & Engn, Dept Informat & Syst Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan
关键词
Elliptic curve cryptosystems; Discrete logarithm problem; GHS attack; WEIL DESCENT; HYPERELLIPTIC CURVES; ALGORITHM;
D O I
10.1090/conm/701/14144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present algorithms implementing the GHS attack against Elliptic curve cryptosystems (ECC). In particular, we consider two large classes of elliptic curves over cubic extension fields of odd characteristic which have weak covering curves against GHS attack, whose existence have been shown recently [17], [18], [19], [20]. We give algorithms to compute the defining equation of the covering curve and to transfer the DLP from the elliptic curve to the Jacobian of the covering curve. An algorithm to test if the covering curve is hyperelliptic is also given in the appendix.
引用
收藏
页码:125 / 150
页数:26
相关论文
共 37 条
  • [1] Elliptic curve cryptosystems over small fields of odd characteristic
    Smart, NP
    JOURNAL OF CRYPTOLOGY, 1999, 12 (02) : 141 - 151
  • [2] Elliptic Curve Cryptosystems over Small Fields of Odd Characteristic
    N. P. Smart
    Journal of Cryptology, 1999, 12 : 141 - 151
  • [3] A Weil descent attack against elliptic curve cryptosystems over quartic extension fields
    Arita, Seigo
    Matsuo, Kazuto
    Nagao, Koh-ichi
    Shimura, Mahoro
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (05) : 1246 - 1254
  • [4] Scan-Based Attack against Elliptic Curve Cryptosystems
    Nara, Ryuta
    Togawa, Nozomu
    Yanagisawa, Masao
    Ohtsuki, Tatsuo
    2010 15TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2010), 2010, : 402 - 407
  • [5] Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic
    Momose, Fumiyuki
    Chao, Jinhui
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2013, 28 (03) : 299 - 357
  • [6] AN IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOSYSTEMS OVER F(2)155
    AGNEW, GB
    MULLIN, RC
    VANSTONE, SA
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1993, 11 (05) : 804 - 813
  • [7] Implementation of Pollard Rho Attack on Elliptic Curve Cryptography over Binary Fields
    Wienardo
    Yuliawan, Fajar
    Muchtadi-Alamsyah, Intan
    Rahardjo, Budi
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS 2014), 2015, 1677
  • [8] Implementation of power attack analysis in ML algorithm circuit with elliptic curve cryptosystems
    Han, Yu
    Zou, Xuecheng
    Liu, Zhenglin
    Dan, Yongping
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37 (02): : 21 - 24
  • [9] Implementation and Analysis of Elliptic Curve Cryptosystems over Polynomial basis and ONB
    Choi, Yong-Je
    Kim, Moo-Seop
    Lee, Hang-Rok
    Kim, Ho-Won
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 10, 2005, 10 : 130 - 134
  • [10] FPGA Implementation of Various Elliptic Curve Pairings over Odd Characteristic Field with Non Supersingular Curves
    Nogami, Yasuyuki
    Kagotani, Hiroto
    Iokibe, Kengo
    Miyatake, Hiroyuki
    Narita, Takashi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (04): : 805 - 815