The optimal order of processing sensor information in sequential multisensor fusion algorithms

被引:20
|
作者
Pao, LY [1 ]
Trailovic, L [1 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, Boulder, CO 80309 USA
关键词
modified Riccati equation; sensor fusion; sensor order; target tracking;
D O I
10.1109/9.871766
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We examine the order of sensor processing in the sequential Multisensor Probabilistic Data Association (MSPDA) filter for target tracking applications. If two sensors of different qualities are used in the sequential MSPDA filter, the rms position error is generally smaller when the worse sensor is processed first. This finding regarding the order of sensor processing is supported by simulations of a target tracking system, and by analysis of first- through sixth-order target process models using the modified Riccati equation.
引用
收藏
页码:1532 / 1536
页数:5
相关论文
共 50 条
  • [1] Computing budget allocation for optimization of sensor processing order in sequential multi-sensor fusion algorithms
    Trailovic, L
    Pao, LY
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 1841 - 1847
  • [2] Sensor defect detection in multisensor information fusion
    Ehlenbroeker, Jan-Friedrich
    Moenks, Uwe
    Lohweg, Volker
    JOURNAL OF SENSORS AND SENSOR SYSTEMS, 2016, 5 (02) : 337 - 353
  • [3] Multisensor information fusion processing and its applications
    Wang, YN
    Li, ST
    Feng, DA
    Yu, HS
    ICEMI'2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1-3, 2003, : 1311 - 1317
  • [4] Optimal multisensor decision fusion of mine detection algorithms
    Liao, YW
    Nolte, LW
    Collins, L
    DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS VIII, PTS 1 AND 2, 2003, 5089 : 1252 - 1260
  • [5] Nonlinear Algorithms for Combining Conflicting Identification Information in Multisensor Fusion
    Hurley, Jeffery
    Johnson, Clint
    Dunham, Joel
    Simmons, Jimmy
    2019 IEEE AEROSPACE CONFERENCE, 2019,
  • [6] Fuzzy binary track correlation algorithms for multisensor information fusion
    Liu, Yu
    He, You
    Dong, Kai
    Wang, Haipeng
    Journal of Networks, 2014, 9 (03) : 672 - 681
  • [7] Artificial Intelligence Algorithms for Multisensor Information Fusion Based on Deep Learning Algorithms
    Jiang, Lan
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [8] Optimal dimensionality reduction of sensor data in multisensor estimation fusion
    Zhu, YM
    Song, EB
    Zhou, J
    You, ZS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (05) : 1631 - 1639
  • [9] Optimal sensor data linear compression in multisensor estimation fusion
    Zhu, YM
    Song, EB
    Zhou, J
    You, ZS
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 5807 - 5812
  • [10] Multisensor Optimal Information Fusion White Noise Deconvolution Filter
    Wang Xin
    Zhu Qidan
    Wu Yebin
    2009 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-7, CONFERENCE PROCEEDINGS, 2009, : 2447 - 2451