Local integrals of motion in many-body localized systems

被引:198
|
作者
Imbrie, John Z. [1 ]
Ros, Valentina [2 ,4 ]
Scardicchio, Antonello [3 ,4 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[3] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] INFN Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
关键词
many-body localization; local integrals of motion; LARGE DISORDER; QUANTUM; STATISTICS; THERMALIZATION; TRANSITION; DIFFUSION; SPECTRA; ABSENCE;
D O I
10.1002/andp.201600278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the current (as of Fall 2016) status of the studies on the emergent integrability in many-body localized models. We start by explaining how the phenomenology of fully many-body localized systems can be recovered if one assumes the existence of a complete set of (quasi)local operators which commute with the Hamiltonian (local integrals of motions, or LIOMs). We describe the evolution of this idea from the initial conjecture, to the perturbative constructions, to the mathematical proof given for a disordered spin chain. We discuss the proposed numerical algorithms for the construction of LIOMs and the status of the debate on the existence and nature of such operators in systems with a many-body mobility edge, and in dimensions larger than one.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Local integrals of motion in quasiperiodic many-body localized systems
    Thomson, Steven J.
    Schiro, Marco
    SCIPOST PHYSICS, 2023, 14 (05):
  • [2] Local integrals of motion for topologically ordered many-body localized systems
    Wahl, Thorsten B.
    Beri, Benjamin
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [3] Explicit Local Integrals of Motion for the Many-Body Localized State
    Rademaker, Louk
    Ortuno, Miguel
    PHYSICAL REVIEW LETTERS, 2016, 116 (01)
  • [4] Constructing local integrals of motion in the many-body localized phase
    Chandran, Anushya
    Kim, Isaac H.
    Vidal, Guifre
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2015, 91 (08)
  • [5] Integrals of motion in the many-body localized phase
    Ros, V.
    Mueller, M.
    Scardicchio, A.
    NUCLEAR PHYSICS B, 2015, 891 : 420 - 465
  • [6] Local integrals of motion and the quasiperiodic many-body localization transition
    Singh, Hansveer
    Ware, Brayden
    Vasseur, Romain
    Gopalakrishnan, Sarang
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [7] Avalanches and many-body resonances in many-body localized systems
    Morningstar, Alan
    Colmenarez, Luis
    Khemani, Vedika
    Luitz, David J.
    Huse, David A.
    PHYSICAL REVIEW B, 2022, 105 (17)
  • [8] Integrals of motion in the many-body localized phase (vol 891, pg 420, 2015)
    Ros, V.
    Mueller, M.
    Scardicchio, A.
    NUCLEAR PHYSICS B, 2015, 900 : 446 - 448
  • [9] Many-body localization from the perspective of Integrals of Motion
    Rademaker, Louk
    Ortuno, Miguel
    Somoza, Andres M.
    ANNALEN DER PHYSIK, 2017, 529 (07)
  • [10] Comparing many-body localization lengths via nonperturbative construction of local integrals of motion
    Peng, Pai
    Li, Zeyang
    Yan, Haoxiong
    Wei, Ken Xuan
    Cappellaro, Paola
    PHYSICAL REVIEW B, 2019, 100 (21)