Global sensitivity analysis of a model for silicon nanoparticle synthesis

被引:6
|
作者
Menz, William J. [1 ]
Brownbridge, George P. E. [1 ]
Kraft, Markus [1 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 3RA, England
关键词
Silicon; Parameter estimation; High dimensional model representation; Population balance; NARROW SIZE DISTRIBUTION; CHEMICAL-VAPOR-DEPOSITION; POPULATION BALANCE MODEL; AEROSOL SYNTHESIS; THERMAL-DECOMPOSITION; PARAMETER-ESTIMATION; PARTICLE FORMATION; SILANE; GROWTH; PHASE;
D O I
10.1016/j.jaerosci.2014.06.011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents a global sensitivity analysis of the detailed population balance model for silicon nanoparticle synthesis of Menz & Kraft [2013a, A new model for silicon nanoparticle synthesis, Combustion & Flame, 160:947-9581. The model consists of a gas-phase kinetic model, fully coupled with a particle population balance. The sensitivity of the model to its seven adjusted parameters was analysed in this work using a High Dimensional Model Representation (HDMR). An algorithm is implemented to generate response surface polynomials with automatically selected order based on their coefficient of determination. A response surface is generated for 19 different experimental cases across a range of process conditions and reactor configurations. This enables the sensitivity of individual experiments to certain parameters to be assessed. The HDMR reveals that particle size was most sensitive to the heterogeneous growth process, while the particle size distribution width is also strongly dependent on the rate of nucleation. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 199
页数:12
相关论文
共 50 条
  • [1] A new model for silicon nanoparticle synthesis
    Menz, William J.
    Kraft, Markus
    COMBUSTION AND FLAME, 2013, 160 (05) : 947 - 958
  • [2] A global model of silicon cycling: Sensitivity to eddy parameterization and dissolution
    Gnanadesikan, A
    GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (01) : 199 - 220
  • [3] Outlier analysis for a silicon nanoparticle population balance model
    Mosbach, Sebastian
    Menz, William J.
    Kraft, Markus
    COMBUSTION AND FLAME, 2017, 177 : 89 - 97
  • [4] Global Sensitivity Analysis for Statistical Model Parameters
    Hart, Joseph L.
    Bessac, Julie
    Constantinescu, Emil M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (01): : 67 - 92
  • [5] Global Sensitivity Analysis on the Bergman Minimal Model
    Nandi, Souransu
    Singh, Tarunraj
    IFAC PAPERSONLINE, 2020, 53 (02): : 16112 - 16118
  • [6] Randomized Global Sensitivity Analysis and Model Robustness
    Mandel, David
    Okten, Giray
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018, 2020, 324 : 403 - 421
  • [7] Global Sensitivity Analysis of a Biochemical Pathway Model
    Rodriguez-Fernandez, Maria
    Banga, Julio R.
    2ND INTERNATIONAL WORKSHOP ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS (IWPACBB 2008), 2009, 49 : 233 - 242
  • [8] Global sensitivity analysis of the harmonized Lemna model
    Guisnet, Chloe
    Reichenberger, Stefan
    Garcia, Elena Alonso
    Voss, Frank
    ECOLOGICAL MODELLING, 2025, 501
  • [9] Global sensitivity analysis of the radiative transfer model
    Neelam, Maheshwari
    Mohanty, Binayak P.
    WATER RESOURCES RESEARCH, 2015, 51 (04) : 2428 - 2443
  • [10] A Global Sensitivity Analysis of Parameter Uncertainty in the CLASSIC Model
    Deepak, Raj S. N.
    Seiler, Christian
    Monahan, Adam H.
    ATMOSPHERE-OCEAN, 2024, 62 (05) : 347 - 359