Fourth-Order Compact Split-Step Finite Difference Method for Solving the Two and Three-Dimensional Nonlinear Schrodinger Equations

被引:1
|
作者
Eskar, Rena [1 ]
Feng, Xinlong [1 ]
Huang, Pengzhan [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; operator splitting method; compact split-step finite difference method; conservation law; stability; CONVECTION-DIFFUSION; BOUNDARY-CONDITIONS; 3; DIMENSIONS; SCHEMES;
D O I
10.4208/aamm.OA-2017-0162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show a fourth-order compact split-step finite difference method to solve the two and three-dimensional nonlinear Schrodinger equations. The conservation properties and stability are analyzed for the proposed scheme. Numerical results show that the method can provide accurate and stable solutions for the nonlinear Schrodinger equation.
引用
收藏
页码:879 / 895
页数:17
相关论文
共 50 条