Automatic Location of Vertebrae on DXA Images Using Random Forest Regression

被引:0
|
作者
Roberts, M. G. [1 ]
Cootes, Timothy F. [1 ]
Adams, J. E. [1 ]
机构
[1] Univ Manchester, Imaging Sci Res Grp, Manchester M13 9PL, Lancs, England
关键词
SHAPE; MORPHOMETRY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We provide a fully automatic method of segmenting vertebrae in DXA images. This is of clinical relevance to the diagnosis of osteoporosis by vertebral fracture, and to grading fractures in clinical trials. In order to locate the vertebrae we train detectors for the upper and lower vertebral endplates. Each detector uses random forest regressor voting applied to Haar-like input features. The regressors are applied at a grid of points across the image, and each tree votes for an endplate centre position. Modes in the smoothed vote image are endplate candidates, some of which are the neighbouring vertebrae of the one sought. The ambiguity is resolved by applying geometric constraints to the connections between vertebrae, although there can be some ambiguity about where the sequence starts (e.g. is the lowest vertebra L4 or L5, Fig 2a). The endplate centres are used to initialise a final phase of Active Appearance Model search for a detailed solution. The method is applied to a dataset of 320 DXA images. Accuracy is comparable to manually initialised AAM segmentation in 91% of images, but multiple grade 3 fractures can cause some edge confusion in severely osteoporotic cases.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 50 条
  • [1] Automatic Localisation of Vertebrae in DXA Images Using Random Forest Regression Voting
    Bromiley, Paul A.
    Adams, Judith E.
    Cootes, Timothy F.
    [J]. COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING, CSI 2015, 2016, 9402 : 38 - 51
  • [2] Automatic location of vertebrae in digitized videofluoroscopic images of the lumbar spine
    Muggleton, JM
    Allen, R
    [J]. MEDICAL ENGINEERING & PHYSICS, 1997, 19 (01) : 77 - 89
  • [3] Automatic hip geometric feature extraction in DXA imaging using regional random forest
    Hussain, Dildar
    Han, Seung-Moo
    Kim, Tae-Seong
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2019, 27 (02) : 207 - 236
  • [4] Automatic ocular version evaluation in images using random forest
    Pinheiro, Jullyana Fialho
    Sousa de Almeida, Joao Dallyson
    Meireles Teixeira, Jorge Antonio
    Braz Junior, Geraldo
    de Paiva, Anselmo Cardoso
    Silva, Aristofanes Correa
    Souza Veras, Rodrigo de Melo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 176
  • [5] Development of automatic classification system for leukocyte images using Random Forest
    Tomiyama, Shinnosuke
    Sakata-Yanagimoto, Mamiko
    Chiba, Shigeru
    Aikawa, Naoyuki
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2018, 101 (11) : 13 - 19
  • [6] Development of automatic classification system for leukocyte images using random forest
    Tomiyama, Shinnosuke
    Sakata-Yanagimoto, Mamiko
    Chiba, Shigeru
    Aikawa, Naoyuki
    [J]. IEEJ Transactions on Electronics, Information and Systems, 2018, 138 (04) : 347 - 351
  • [7] The automatic detection of the optic disc location in retinal images using optic disc location regression
    Abramoff, Michael D.
    Niemeijer, Meindert
    [J]. 2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 5204 - +
  • [8] Automatic Personality Prediction from Audiovisual Data using Random Forest Regression
    Aydin, Berkay
    Kindiroglu, Ahmet Alp
    Aran, Oya
    Akarun, Lale
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 37 - 42
  • [9] Fully Automatic Segmentation of the Proximal Femur Using Random Forest Regression Voting
    Lindner, C.
    Thiagarajah, S.
    Wilkinson, J. M.
    Wallis, G. A.
    Cootes, T. F.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (08) : 1462 - 1472
  • [10] Fusion of SAR and Multispectral Images Using Random Forest Regression for Change Detection
    Seo, Dae Kyo
    Kim, Yong Hyun
    Eo, Yang Dam
    Lee, Mi Hee
    Park, Wan Yong
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (10)