A nonlinear model for long-memory conditional heteroscedasticity

被引:4
|
作者
Doukhan, Paul [1 ,2 ]
Grublyte, Ieva [1 ,3 ]
Surgailis, Donatas [3 ]
机构
[1] Univ Cergy Pontoise, F-95302 Cergy Pontoise, France
[2] Inst Univ France, Paris, France
[3] Vilnius Univ, Inst Math & Informat, Akademijos Str 4, LT-08663 Vilnius, Lithuania
关键词
ARCH model; leverage; long memory; Donsker's invariance principle; INEQUALITIES; SEQUENCES;
D O I
10.1007/s10986-016-9312-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a class of conditionally heteroscedastic time series models satisfying the equation r (t) = zeta (t) sigma (t) , where zeta (t) are standardized i.i.d. r.v.s, and the conditional standard deviation sigma (t) is a nonlinear function Q of inhomogeneous linear combination of past values r (s) , s < t, with coefficients b (j) . The existence of stationary solution rt with finite pth moment, 0 < p < a is obtained under some conditions on Q, b (j) and the pth moment of zeta (0). Weak dependence properties of r (t) are studied, including the invariance principle for partial sums of Lipschitz functions of r (t) . In the case where Q is the square root of a quadratic polynomial, we prove that r (t) can exhibit a leverage effect and long memory in the sense that the squared process r (t) (2) has long-memory autocorrelation and its normalized partial-sum process converges to a fractional Brownian motion.
引用
收藏
页码:164 / 188
页数:25
相关论文
共 50 条
  • [1] A nonlinear model for long-memory conditional heteroscedasticity*
    Paul Doukhan
    Ieva Grublyt˙
    Donatas Surgailis
    Lithuanian Mathematical Journal, 2016, 56 : 164 - 188
  • [2] A generalized nonlinear model for long memory conditional heteroscedasticity
    Grublyte, Ieva
    Skarnulis, Andrius
    STATISTICS, 2017, 51 (01) : 123 - 140
  • [3] Averaged periodogram spectral estimation with long-memory conditional heteroscedasticity
    Henry, M
    JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (04) : 431 - 459
  • [4] A model for long memory conditional heteroscedasticity
    Giraitis, L
    Robinson, PM
    Surgailis, D
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (03): : 1002 - 1024
  • [5] Spectral estimation with long memory conditional heteroscedasticity
    Henry, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (09): : 811 - 814
  • [6] Conditional Heteroskedasticity in Long-Memory Model "FIMACH" for Return Volatilities in Equity Markets
    Quoreshi, A. M. M. Shahiduzzaman
    Mollah, Sabur
    THEORY AND APPLICATIONS OF TIME SERIES ANALYSIS, 2019, : 149 - 169
  • [7] A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity
    Sohn, H. G.
    Kim, S.
    KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (06) : 1053 - 1061
  • [8] A smooth transition long-memory model
    Aloy, Marcel
    Dufrenot, Gilles
    Tong, Charles Lai
    Peguin-Feissolle, Anne
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2013, 17 (03): : 281 - 296
  • [9] CEV model equipped with the long-memory
    Fallah, Somayeh
    Mehrdoust, Farshid
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [10] Testing the Market Efficiency in Crypto Currency Markets Using Long-Memory and Heteroscedasticity Tests
    Gulec, Tuna Can
    Aktas, Huseyin
    ESKISEHIR OSMANGAZI UNIVERSITESI IIBF DERGISI-ESKISEHIR OSMANGAZI UNIVERSITY JOURNAL OF ECONOMICS AND ADMINISTRATIVE SCIENCES, 2019, 14 (02): : 491 - 510