Extending sawtooth functions to Hurwitz polynomials

被引:0
|
作者
Gundrum, HC [1 ]
Rizkalla, M [1 ]
机构
[1] IUPUI, Purdue Sch Engn & Technol, Dept Elect Engn, Indianapolis, IN 46202 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An extension of the properties of sawtooth functions is applied to rational Hurwitz polynomials of the form H(z) = p(z)iq(z). When H(z) is rational, the functions for p(z) and q(z) are defined in a function f(m+/- in), where m and n are integers. The integer function describes the slope of a sawtooth with a unity period scanning through a rational point on a unit circle. Roots of H(z) can be found through analysis of the integer function.
引用
收藏
页码:566 / 569
页数:4
相关论文
共 50 条
  • [1] HURWITZ POLYNOMIALS
    HINDMARSH, AC
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (05): : 533 - 536
  • [2] On Hurwitz stable polynomials and strictly positive real transfer functions
    Wang, L
    Yu, WS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (01) : 127 - 128
  • [3] ON ROBUST HURWITZ POLYNOMIALS
    ANDERSON, BDO
    JURY, EI
    MANSOUR, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (10) : 909 - 913
  • [4] HURWITZ POLYNOMIALS, LC AND RC POSITIVE REAL FUNCTIONS, AND HERMITE MATRIX
    ANDERSON, BD
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1972, CT19 (05): : 495 - &
  • [5] HURWITZ SEQUENCES OF POLYNOMIALS
    GENIN, Y
    PHILIPS RESEARCH REPORTS, 1975, 30 (2-3): : 89 - 102
  • [6] Comments on "On Hurwitz stable polynomials and strictly positive real transfer functions"
    Marquez, HJ
    Agathoklis, P
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (01): : 129 - 129
  • [7] ON ROBUST HURWITZ POLYNOMIALS
    ESLAMI, M
    1989 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 1989, : 1776 - 1779
  • [8] ON PROPERTIES OF HURWITZ POLYNOMIALS
    ANTONCHIK, VS
    AUTOMATION AND REMOTE CONTROL, 1994, 55 (11) : 1699 - 1702
  • [9] On sequences of Hurwitz polynomials related to orthogonal polynomials
    Martinez, Noe
    Garza, Luis E.
    Aguirre-Hernandez, Baltazar
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2191 - 2208
  • [10] On genus expansion of knot polynomials and hidden structure of Hurwitz tau-functions
    A. Mironov
    A. Morozov
    A. Sleptsov
    The European Physical Journal C, 2013, 73