A radiomic approach to predict outcome in patients treated with SBRT for early stage NSCLC

被引:0
|
作者
Cozzi, L. [1 ]
Davide, F. [1 ]
Fiorenza, D. R. [1 ]
Pierina, N. [2 ]
Antonella, F. [1 ]
Ciro, F. [1 ]
Donato, P. [1 ]
Stefano, T. [1 ]
Giacomo, R. [1 ]
Marta, S. [1 ]
机构
[1] Humanitas, Radiotherapy, Rozzano, Italy
[2] Humanitas, Radiotherapyt, Rozzano, Italy
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO-1567
引用
收藏
页码:S848 / S849
页数:2
相关论文
共 50 条
  • [1] Baseline radiomic features for outcome modeling in early-stage NSCLC candidates to SBRT
    Volpe, Stefania
    Gaeta, Aurora
    Casbarra, Alessia
    Franzetti, Jessica
    Camarda, Anna M.
    Mastroleo, Federico
    Piperno, Gaia
    Zaffaroni, Mattia
    Vincini, Maria G.
    Raimondi, Sara
    Botta, Francesca
    Isaksson, Lars J.
    Gandini, Sara
    Cremonesi, Marta
    Orecchia, Roberto
    Jereczek-Fossa, Barbara A.
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S1661 - S1663
  • [2] A Radiomic Approach to Predict Nodal and Distant Relapse in Patients Treated with Stereotactic Body Radiation Therapy for Early Stage NSCLC
    Franceschini, D.
    Cozzi, L.
    Pezzulla, D.
    De Rose, F.
    Franzese, C.
    Tomatis, S.
    Scorsetti, M.
    JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (10) : S891 - S892
  • [3] PET/CT Radiomics predict local recurrence in patients treated with SBRT for early-stage NSCLC
    Dissaux, G.
    Hatt, M.
    Visvikis, D.
    Pradier, O.
    Chajon, E.
    Barillot, I.
    Duverge, L.
    Masson, I.
    Abgral, R.
    Santiago-Ribeiro, M.
    Devillers, A.
    Kraeber-Bodere, F.
    Mahe, M.
    De Crevoisier, R.
    Schick, U.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S1054 - S1054
  • [4] Deep learning predicts survival for early stage NSCLC patients treated with SBRT
    Zheng, S.
    Guo, J.
    Langendijk, J.
    Both, S.
    Veldhuis, R.
    Oudkerk, M.
    van Ooijen, P.
    Wijsman, R.
    Sijtsema, N.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S375 - S376
  • [5] Harnessing Baseline Radiomic Features in Early-Stage NSCLC: What Role in Clinical Outcome Modeling for SBRT Candidates?
    Volpe, Stefania
    Vincini, Maria Giulia
    Zaffaroni, Mattia
    Gaeta, Aurora
    Raimondi, Sara
    Piperno, Gaia
    Franzetti, Jessica
    Colombo, Francesca
    Camarda, Anna Maria
    Mastroleo, Federico
    Botta, Francesca
    Spaggiari, Lorenzo
    Gandini, Sara
    Guckenberger, Matthias
    Orecchia, Roberto
    Casiraghi, Monica
    Jereczek-Fossa, Barbara Alicja
    CANCERS, 2025, 17 (05)
  • [6] SBRT for Central Tumors in Early Stage NSCLC Patients
    Stam, B.
    Grills, I. S.
    Kwint, M.
    Guckenberger, M.
    Mantel, F.
    Hope, A. J.
    Giuliani, M. E.
    Werner-Wasik, M.
    Sonke, J. J.
    Belderbos, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (02): : S17 - S17
  • [7] Dose on cardiac (sub)structures as predictor for OS in early stage NSCLC patients treated with SBRT
    Duijm, M.
    Pezzulla, D.
    Schillemans, W.
    Nuyttens, J.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S226 - S227
  • [8] SUVs from staging FDG-PET do not predict treatment outcomes for early stage NSCLC treated with SBRT
    Burdick, M. J.
    Stephans, K. L.
    Reddy, C. A.
    Djemil, T.
    Videtic, G. M. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2008, 72 (01): : S451 - S451
  • [9] The Place and Importance of SBRT in Early Stage NSCLC
    Cihan, Yasemin Benderli
    TURKISH THORACIC JOURNAL, 2021, 22 (05): : 424 - 425
  • [10] Prognosticator of SBRT efficacy and toxicity in early-stage NSCLC patients
    Walz, D.
    Salome, P.
    Sforazzini, F.
    Kudak, A.
    Dostal, M.
    Regnery, S.
    Schlamp, K.
    Heussel, C. P.
    Herth, F.
    Thomas, M.
    Hoerner-Rieber, J.
    Debus, J.
    Knoll, M.
    Abdollahi, A.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1070 - S1071