Energy-Aware Workload Allocation for Distributed Deep Neural Networks in Edge-Cloud Continuum

被引:6
|
作者
Jin, Yi [1 ]
Xu, Jiawei [1 ]
Huan, Yuxiang [1 ]
Yan, Yulong [1 ]
Zheng, Lirong [1 ,2 ]
Zou, Zhuo [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
[2] Royal Inst Technol, Stockholm, Sweden
基金
美国国家科学基金会;
关键词
D O I
10.1109/SOCC46988.2019.1570554761
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an energy-aware workload allocation framework for Distributed Deep Neural Networks (DNNs) in the Edge-Cloud continuum. As opposed to conventional approaches where the inference is performed in a standalone device. a computing-communication mode is proposed to distribute computing tasks of different layers of DNNs to different levels of the Edge-Cloud network to achieve the minimum energy cost per inference. The optimal exit layer (EL) can be determined where the intermediate data of the neural networks are transmitted to the higher level in the Edge-Cloud continuum. Case studies are illustrated for AlexNet and VGG-16 considering a set of DNN processors and wireless interfaces. Using the GPU GTX1080 with 22.8 GOPS/W and the WiFi with 10 nJ/bit transmission efficiency, the optimized energy consumption for AlexNet is estimated to be 0.016 J when the inference exits from the edge at the EL2 (Conv1) layer. For VGG-16, the optimal EL is ELI with the minimum inference cost of 0.0482 J.
引用
收藏
页码:213 / 217
页数:5
相关论文
共 50 条
  • [1] Cost Optimization for the Edge-Cloud Continuum by Energy-Aware Workload Placement
    Brannvall, Rickard
    Stark, Tina
    Gustafsson, Jonas
    Eriksson, Mats
    Summers, Jon
    [J]. E-ENERGY '23 COMPANION-PROCEEDINGS OF THE 2023 THE 14TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2023, : 79 - 84
  • [2] Security-Aware Resource Allocation in the Edge-Cloud Continuum
    Soumplis, Polyzois
    Kontos, Georgios
    Kretsis, Aristotelis
    Kokkinos, Panagiotis
    Nanos, Anastassios
    Varvarigos, Emmanouel
    [J]. 2023 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING, CLOUDNET, 2023, : 161 - 169
  • [3] Resource Allocation for Distributed Machine Learning at the Edge-Cloud Continuum
    Sartzetakis, Ippokratis
    Soumplis, Polyzois
    Pantazopoulos, Panagiotis
    Katsaros, Konstantinos V.
    Sourlas, Vasilis
    Varvarigos, Emmanouel
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5017 - 5022
  • [4] Energy-efficient workload allocation in edge-cloud fiber-wireless networks
    Wang, Shoucui
    Chen, Bowen
    Liang, Ruixin
    Liu, Ling
    Chen, Hong
    Gao, Mingyi
    Wu, Jinbing
    Ju, Weiguo
    Ho, Pin-Han
    [J]. OPTICS EXPRESS, 2022, 30 (24) : 44186 - 44200
  • [5] ENERDGE: Distributed Energy-Aware Resource Allocation at the Edge
    Avgeris, Marios
    Spatharakis, Dimitrios
    Dechouniotis, Dimitrios
    Leivadeas, Aris
    Karyotis, Vasileios
    Papavassiliou, Symeon
    [J]. SENSORS, 2022, 22 (02)
  • [6] Distributed Dataflow Across the Edge-Cloud Continuum
    Ekaireb, Tyler
    Brand, Lukas
    Avaraddy, Nagarjun
    Mock, Markus
    Krintz, Chandra
    Wolski, Rich
    [J]. 2024 IEEE 17TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, CLOUD 2024, 2024, : 316 - 327
  • [7] Energy-Aware Distributed Edge Domination of Multilayer Networks
    Papakostas, Dimitrios
    Eshghi, Soheil
    Katsaros, Dimitrios
    Tassiulas, Leandros
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4055 - 4062
  • [8] Energy-Aware and Trust-Collaboration Cross-Domain Resource Allocation Algorithm for Edge-Cloud Workflows
    Li, Juan
    Qin, Zhiwei
    Liu, Wei
    Yu, Xiao
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 7249 - 7264
  • [9] QoS aware FaaS for Heterogeneous Edge-Cloud continuum
    Sheshadri, K. R.
    Lakshmi, J.
    [J]. 2022 IEEE 15TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (IEEE CLOUD 2022), 2022, : 70 - 80
  • [10] Energy-Aware Task Allocation for Multi-Cloud Networks
    Mishra, Sambit Kumar
    Mishra, Sonali
    Alsayat, Ahmed
    Jhanjhi, N. Z.
    Humayun, Mamoona
    Sahoo, Kshira Sagar
    Luhach, Ashish Kr
    [J]. IEEE ACCESS, 2020, 8 : 178825 - 178834