Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel via ethylene glycol-assisted synthesis

被引:25
|
作者
Zhang, Xianfa [1 ,2 ]
Liu, Jing [1 ,2 ]
Yu, Haiying [3 ]
Yang, Guiling [1 ,2 ]
Wang, Jiawei [1 ,2 ]
Yu, Zijia [1 ,2 ]
Xie, Haiming [1 ,2 ]
Wang, Rongshun [1 ,2 ]
机构
[1] NE Normal Univ, Dept Chem, Inst Funct Mat, Changchun 130024, Jilin, Peoples R China
[2] Mat Sci & Technol Ctr, LIB Engn Lab, Changchun 130024, Jilin, Peoples R China
[3] Inner Mongolia Univ Technol, Coll Chem Engn, Hohhot 010051, Peoples R China
关键词
Li-ion batteries; Cathode material; LiNi0.5Mn1.5O4; Electrochemical performance; Ethylene glycol-assisted synthesis; ELECTRODE MATERIALS; CATHODE MATERIALS; RATE CAPABILITY;
D O I
10.1016/j.electacta.2009.12.001
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g(-1) which is about 93.4% of the theoretical capacity (146.7 mAh g(-1)). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g(-1) with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2414 / 2417
页数:4
相关论文
共 50 条
  • [1] Synthesis and electrochemical performance of LiNi0.5Mn1.5O4 spinel compound
    Liu, GQ
    Wang, YJ
    Qilu
    Li, W
    Chenhui
    ELECTROCHIMICA ACTA, 2005, 50 (09) : 1965 - 1968
  • [2] Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel in half -cell and full -cell via yttrium doping
    Wu, Wei
    Guo, Jianling
    Qin, Xing
    Bi, Chunbo
    Wang, Jiangfeng
    Wang, Li
    Liang, Guangchuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 721 : 721 - 730
  • [3] Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel
    Wu, XL
    Kim, SB
    JOURNAL OF POWER SOURCES, 2002, 109 (01) : 53 - 57
  • [4] Low tempderature synthesis of LiNi0.5Mn1.5O4 spinel
    Fang, HS
    Wang, ZX
    Li, XH
    Guo, HJ
    Peng, WJ
    MATERIALS LETTERS, 2006, 60 (9-10) : 1273 - 1275
  • [5] ENHANCED ELECTROCHEMICAL PERFORMANCES OF LiNi0.5Mn1.5O4 BY SURFACE MODIFICATION WITH Cu NANOPARTICLES
    Zhao, G.
    Lin, Y.
    Zhu, W.
    Yang, W.
    Huang, Z.
    JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY, 2017, 53 (01) : 61 - 66
  • [6] Intrinsic electrochemical characteristics of one LiNi0.5Mn1.5O4 spinel particle
    Nishikawa, Kei
    Zettsu, Nobuyuki
    Teshima, Katsuya
    Kanamura, Kiyoshi
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 799 : 468 - 472
  • [7] Effect of annealing treatment on electrochemical property of LiNi0.5Mn1.5O4 spinel
    Zhang Bao
    Wang Zhi-xing
    Guo Hua-jun
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2007, 17 (02) : 287 - 290
  • [8] Effect of annealing treatment on electrochemical property of LiNi0.5Mn1.5O4 spinel
    张宝
    王志兴
    郭华军
    Transactions of Nonferrous Metals Society of China, 2007, (02) : 287 - 290
  • [9] Understanding the sucrose-assisted combustion method: Effects of the atmosphere and fuel amount on the synthesis and electrochemical performances of LiNi0.5Mn1.5O4 spinel
    Manuel Amarilla, Jose
    Rojas, Rosa M.
    Maria Rojo, Jose
    JOURNAL OF POWER SOURCES, 2011, 196 (14) : 5951 - 5959
  • [10] Synthesis of porous peanut-like LiNi0.5Mn1.5O4 cathode materials through an ethylene glycol-assisted hydrothermal method using urea as a precipitant
    Wang, Li
    Liu, Guijuan
    Wu, Wei
    Chen, Dan
    Liang, Guangchuan
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) : 19497 - 19506