On an oblique derivative problem of finite index for nonlinear elliptic discontinuous equations in the plane

被引:0
|
作者
Giuffrè, S [1 ]
机构
[1] Univ Reggio Calabria, DIMET, Fac Engn, I-89100 Reggio Di Calabria, Italy
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2003年 / 63卷 / 04期
关键词
nonlinear discontinuous elliptic operators; oblique derivative problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An uniqueness and existence theorem in Sobolev spaces is proved for a tangential oblique derivative problem of finite index in the plane for second order nonlinear elliptic equations with discontinuous coefficients. The nonlinear operator A (x, D(2)u) is assumed to be of Caratheodory type and to satisfy an ellipticity condition. Only measurability with respect to the independent variable chi is required.
引用
收藏
页码:611 / 621
页数:11
相关论文
共 50 条