Self-organization of nanoparticles and molecules in periodic Liesegang-type structures

被引:15
|
作者
Ackroyd, Amanda J. [1 ]
Hollo, Gabor [2 ]
Mundoor, Haridas [3 ,4 ]
Zhang, Honghu [5 ]
Gang, Oleg [5 ,6 ]
Smalyukh, Ivan I. [3 ,4 ]
Lagzi, Istvan [5 ,7 ]
Kumacheva, Eugenia [1 ,8 ,9 ]
机构
[1] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[2] BME MTA Condensed Matter Phys Res Grp, H-1111 Budapest, Hungary
[3] Univ Colorado, Dept Phys Mat Sci & Engn, Boulder, CO 80309 USA
[4] Univ Colorado, Renewable & Sustainable Energy Inst RASEI, Boulder, CO 80309 USA
[5] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[6] Columbia Univ, Dept Chem Engn & Appl Phys, New York, NY 10027 USA
[7] Budapest Univ Technol & Econ, Dept Phys, H-1111 Budapest, Hungary
[8] Univ Toronto, Inst Biomat & Biomed Engn, Dept Chem, Toronto, ON M5S 3H6, Canada
[9] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3H6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CELLULOSE NANOCRYSTALS; FILMS; IRIDESCENT; COMPOSITE; PATTERNS; RINGS;
D O I
10.1126/sciadv.abe3801
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chemical organization in reaction-diffusion systems offers a strategy for the generation of materials with ordered morphologies and structural hierarchy. Periodic structures are formed by either molecules or nanoparticles. On the premise of new directing factors and materials, an emerging frontier is the design of systems in which the precipitation partners are nanoparticles and molecules. We show that solvent evaporation from a suspension of cellulose nanocrystals (CNCs) and L-(+)-tartaric acid [L-(+)-TA] causes phase separation and precipitation, which, being coupled with a reaction/diffusion, results in rhythmic alternation of CNC-rich and L-(+)-TA-rich rings. The CNC-rich regions have a cholesteric structure, while the L-(+)-TA-rich bands are formed by radially aligned elongated bundles. The moving edge of the pattern propagates with a finite constant velocity, which enables control of periodicity by varying film preparation conditions. This work expands knowledge about self-organizing reaction-diffusion systems and offers a strategy for the design of self-organizing materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Self-organization of nanometer periodic structures of clusters in solids
    Mirzade, Fikret Kh.
    Allakhverdiev, Kerim R.
    Salaeva, Zehra Yu.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (02) : 764 - 767
  • [2] Deep UV laser induced periodic surface structures on silicon formed by self-organization of nanoparticles
    Zazo, Raul
    Solis, Javier
    Sanchez-Gil, Jose A.
    Ariza, Rocio
    Serna, Rosalia
    Siegel, Jan
    [J]. APPLIED SURFACE SCIENCE, 2020, 520
  • [3] PECULIARITIES OF SELF-ORGANIZATION OF SPONTANEOUS PERIODIC STRUCTURES IN PHOTOSENSITIVE LAYERS
    LYMAR, VI
    MILOSLAVSKY, VK
    AGEEV, LA
    [J]. UKRAINSKII FIZICHESKII ZHURNAL, 1994, 39 (5-6): : 672 - 676
  • [4] SELF-ORGANIZATION OF PERIODIC STRUCTURES WITH PHASE-SLIP OSCILLATORS
    AKHMETOV, AA
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1988, 94 (04): : 328 - 335
  • [5] SELF-ORGANIZATION OF PROTEIN MOLECULES
    PTITSYN, OB
    [J]. STUDIA BIOPHYSICA, 1973, 40 : 159 - 160
  • [6] SELF-ORGANIZATION OF ALBUMINOUS MOLECULES
    PTITSYN, OB
    [J]. VESTNIK AKADEMII NAUK SSSR, 1973, (05) : 57 - 68
  • [8] SELF-ORGANIZATION OF BIOLOGICAL STRUCTURES
    HOLMES, KC
    [J]. KLINISCHE WOCHENSCHRIFT, 1975, 53 (21): : 997 - 1005
  • [9] Interfacial self-organization of organic molecules
    Wandelt, Klaus
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [10] Synthesis and self-organization of Au nanoparticles
    Pyrpassopoulos, S.
    Niarchos, D.
    Nounesis, G.
    Boukos, N.
    Zafiropoulou, I.
    Tzitzios, V.
    [J]. NANOTECHNOLOGY, 2007, 18 (48)