Optimization of NWP model closure parameters using total energy norm of forecast error as a target

被引:18
|
作者
Ollinaho, P. [1 ,2 ]
Jarvinen, H. [2 ]
Bauer, P. [3 ]
Laine, M. [1 ]
Bechtold, P. [3 ]
Susiluoto, J. [1 ,2 ]
Haario, H. [4 ]
机构
[1] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[2] Univ Helsinki, Dept Phys, Helsinki, Finland
[3] European Ctr Medium Range Weather Forecasts, Reading, Berks, England
[4] Lappeenranta Univ Technol, Lappeenranta, Finland
基金
芬兰科学院;
关键词
SINGULAR VECTORS; GENERAL-CIRCULATION; WEATHER; PREDICTION; CLIMATE; SYSTEM;
D O I
10.5194/gmd-7-1889-2014
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We explore the use of dry total energy norm in improving numerical weather prediction (NWP) model forecast skill. The Ensemble Prediction and Parameter Estimation System (EPPES) is utilized to estimate ECHAM5 atmospheric GCM (global circulation models) closure parameters related to clouds and precipitation. The target criterion in the optimization is the dry total energy norm of 3-day forecast error with respect to the ECMWF (European Centre for Medium-Range Weather Forecasts) operational analyses. The results are summarized as follows: (i) forecast error growth in terms of energy norm is slower in the optimized than in the default model up to day 10 forecasts (and beyond), (ii) headline forecast skill scores are improved in the training sample as well as in independent samples, (iii) the decrease of the forecast error energy norm at day three is mainly because of smaller kinetic energy error in the tropics, and (iv) this impact is spread into midlatitudes at longer ranges and appears as a smaller forecast error of potential energy. The interpretation of these results is that the parameter optimization has reduced the model error so that the forecasts remain longer in the vicinity of the analyzed state.
引用
收藏
页码:1889 / 1900
页数:12
相关论文
共 50 条
  • [1] NWP model forecast skill optimization via closure parameter variations
    Ollinaho, Pirkka
    Laine, Marko
    Solonen, Antti
    Haario, Heikki
    Jarvinen, Heikki
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (675) : 1520 - 1532
  • [2] The total energy norm in a quasigeostrophic model
    Ehrendorfer, M
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2000, 57 (20) : 3443 - 3451
  • [3] Wind Energy Forecast Error Estimation Using Black & Scholes Mathematical Model
    Ghaffari, Reza
    Venkatesh, Bala
    2014 IEEE 27TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2014,
  • [4] The Error is the Feature: How to Forecast Lightning using a Model Prediction Error
    Schoen, Christian
    Dittrich, Jens
    Mueller, Richard
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2979 - 2988
  • [5] Very Short-Term Solar Power Forecast using Data from NWP Model
    Jaidee, Sukrit
    Pora, Wanchalerm
    PROCEEDINGS OF THE 2019 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (INCIT): ENCOMPASSING INTELLIGENT TECHNOLOGY AND INNOVATION TOWARDS THE NEW ERA OF HUMAN LIFE, 2019, : 44 - 49
  • [6] Energy storage optimization configuration method considering conditional forecast error correction
    Mao M.
    Hong J.
    Zhang L.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (02): : 410 - 416
  • [7] Synthesis optimization of underwater glider motion parameters based on the total energy consumption model
    Tian, Xin
    Zhang, Hongwei
    Zhou, Huanxin
    Zhang, Lianhong
    OCEAN ENGINEERING, 2024, 297
  • [8] An estimation of the sensitivity of numerical error norm using adjoint model
    Alekseev, A. K.
    Navon, I. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (12) : 1421 - 1434
  • [9] Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters
    Daescu, Dacian N.
    Todling, Ricardo
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (653) : 2000 - 2012
  • [10] Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks
    Lima, Francisco J. L.
    Martins, Fernando R.
    Pereira, Enio B.
    Lorenz, Elke
    Heinemann, Detlev
    RENEWABLE ENERGY, 2016, 87 : 807 - 818