Convolutional neural network-based automatic classification of midsagittal tongue gestural targets using B-mode ultrasound images

被引:27
|
作者
Xu, Kele [1 ,2 ]
Roussel, Pierre [2 ]
Csapo, Tamas Gabor [3 ,5 ]
Denby, Bruce [4 ]
机构
[1] Univ Paris 06, Dept Engn, F-75005 Paris, France
[2] ESPCI ParisTech, Langevin Inst, F-75005 Paris, France
[3] Budapest Univ Technol & Econ, Dept Telecommun & Media Informat, Budapest, Hungary
[4] Tianjin Univ, Tianjin 300000, Peoples R China
[5] MTA ELTE Lendulet Lingual Articulat Res Grp, Budapest, Hungary
来源
关键词
D O I
10.1121/1.4984122
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Tongue gestural target classification is of great interest to researchers in the speech production field. Recently, deep convolutional neural networks (CNN) have shown superiority to standard feature extraction techniques in a variety of domains. In this letter, both CNN-based speaker-dependent and speaker-independent tongue gestural target classification experiments are conducted to classify tongue gestures during natural speech production. The CNN-based method achieves state-of-the-art performance, even though no pre-training of the CNN (with the exception of a data augmentation preprocessing) was carried out. (C) 2017 Acoustical Society of America
引用
收藏
页码:EL531 / EL537
页数:7
相关论文
共 50 条
  • [1] Estimation of Ultrasound Echogenicity Map from B-Mode Images Using Convolutional Neural Network
    Shen, Che-Chou
    Yang, Jui-En
    SENSORS, 2020, 20 (17) : 1 - 14
  • [2] Estimation of ultrasound echogenicity map from B-mode images using convolutional neural network
    Yang, Jui-En
    Shen, Che-Chou
    Lin, Ri-Cheng
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2020,
  • [3] Automatic classification of carotid ultrasound images based on convolutional neural network
    Xia, Yujiao
    Cheng, Xinyao
    Fenster, Aaron
    Ding, Mingyue
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [4] Stabilized Ultrasound Imaging of a Moving Object Using 2D B-mode Images and Convolutional Neural Network
    Xie, Tian
    Shahbazi, Mahya
    Wu, Yixuan
    Taylor, Russell H.
    Boctor, Emad M.
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [5] Automatic Diagnosis of Significant Liver Fibrosis From Ultrasound B-Mode Images Using a Handcrafted-Feature-Assisted Deep Convolutional Neural Network
    Liu, Zhong
    Huang, Bin
    Wen, Huiying
    Lu, Zhicheng
    Huang, Qicai
    Jiang, Meiqin
    Dong, Changfeng
    Liu, Yingxia
    Chen, Xin
    Lin, Haoming
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 4938 - 4949
  • [6] Convolutional Neural Network-Based Automatic Classification for Algal Morphogenesis
    Hayashi, Kohma
    Kato, Shoichi
    Matsunaga, Sachihiro
    CYTOLOGIA, 2018, 83 (03) : 300 - 304
  • [7] Feature analysis and automatic classification of B-mode ultrasound images of fatty liver
    Zhang, Pengfei
    Huang, Hong
    Xiong, Qiuju
    He, Xinlu
    Liu, Yong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [8] Synthetic Elastography Using B-Mode Ultrasound Through a Deep Fully Convolutional Neural Network
    Wildeboer, R. R.
    van Sloun, R. J. G.
    Mannaerts, C. K.
    Moraes, P. H.
    Salomon, G.
    Chammas, M. C.
    Wijkstra, H.
    Mischi, M.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (12) : 2640 - 2648
  • [9] Automatic segmentation of carotid B-mode images using fuzzy classification
    Rocha, Rui
    Silva, Jorge
    Campilho, Aurelio
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2012, 50 (05) : 533 - 545
  • [10] Automatic segmentation of carotid B-mode images using fuzzy classification
    Rui Rocha
    Jorge Silva
    Aurélio Campilho
    Medical & Biological Engineering & Computing, 2012, 50 : 533 - 545