On the distribution of Jacobi sums

被引:2
|
作者
Lu, Qing [1 ,2 ]
Zheng, Weizhe [3 ]
Zheng, Zhiyong [4 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[4] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
GAUSS SUMS;
D O I
10.1515/crelle-2015-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field of q elements. For multiplicative characters chi(1),..., chi(m) of F-q(x), we let J (chi(1), ..., chi(m)) denote the Jacobi sum. Nicholas Katz and Zhiyong Zheng showed that for m = 2, the normalized Jacobi sum q(-1/2) J (chi(1) , chi(2)) (chi(1), chi(2) nontrivial) is asymptotically equidistributed on the unit circle as q -> infinity, when chi(1) and chi(2) run through all nontrivial multiplicative characters of F-q(x). In this paper, we show a similar property for m >= 2. More generally, we show that the normalized Jacobi sum q(-(m-1)/2) J (chi(1), ..., chi(m)) (chi(1) ... chi(m) nontrivial) is asymptotically equidistributed on the unit circle, when chi(1), ..., chi(m) run through arbitrary sets of nontrivial multiplicative characters of F-q(x) with two of the sets being sufficiently large. The case m = 2 answers a question of Shparlinski.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 50 条